Устройство гидросистемы

Места установки клапанов

Выбор места установки зависит от технологических возможностей, которые определяются давлением потока рабочей среды, её температурой и диаметром условного прохода трубопроводной линии.

Предпочтительными местами монтажа считаются участки канализационных линий, на которых возможен гидроудар. Например, устройства с поворотными лепестками могут находиться в местах сравнительно небольших скоростей потока, поскольку особенности конструкции позволяют быстрое открывание или закрывание.

Целесообразность обратных клапанов особенно проявляется при их установке в местах трубопровода, где часто вызывается турбулентность потока, а скорость перемещения жидкости может резко колебаться во времени.

Для приведения в действие всегда используется сила тяжести. Следовательно, для грамотного применения устройства всегда должны учитываться его расположение и ориентация. Подъемные и шаровые обратные клапаны обычно располагают в вертикальном направлении. При установке клапанов дискового или лепесткового типов необходимо удостовериться в том. что диск всегда будет свободно и надежно закрыт под воздействием силы тяжести.

Совет: Крайне не рекомендуется устанавливать устройства в тех местах канализационной линии, где располагается потенциальный источник турбулентности потока — насос, колено, тройник, регулирующий клапан и т.п. Прямой участок должен составлять от 8 до 10 условных диаметров трубы.

Дифференциальный клапан

Дифференциальный клапан ( ДК) IS состоит из корпуса, вставляемого внутрь импульса, клапана, пружины и нажимной пробки. В корпусе ДК имеется сквозное калиброванное отверстие, через которое идет газ при закрытом клапане. За счет этого меняются сечение импульса, его пропускная способность, а также скорость тазовой струи внутри импульса. Это способствует нормальной работе регулятора.

Схема работы конечных клапанов.

Дифференциальные клапаны с пружиной имеют отверстия постоянного диаметра. Некоторые клапаны имеют свободные отверстия, отверстия других клапанов перекрываются в результате навинчивания муфты.

Кинематическая и гидравлическая схемы коробки передач трактора 621 фирмы Катерпиллар.

Дифференциальный клапан обеспечивает включение сначала передачи, а затем фрикциона выбора направления. Контрольный клапан регулирует скорость нарастания давления в системе управления.

Дифференциальный клапан, применяемый для пульсирующих насосов второго класса, выполняет две основные задачи: обеспечивает быстрое сбрасывание давления в камере насоса для ускорения наполнения и поддерживает при работе насоса определенный динамический уровень в колодце.

Дифференциальный клапан, установленный на трубопроводе после счетчика, предназначен для предотвращения кипения и превращения в пар сжиженного газа в счетчике. Работа дифференциального клапана основана на разности давлений сжиженного газа и упругости насыщенных паров. Пар поступает в дифференциальный клапан сверху, создавая давление над мембраной, равное упругости насыщенных паров. Сжиженный газ поступает из счетчика в клапан, в полость под мембраной. При этом давление под мембраной окажется больше, чем давление над ней, и дифференциальный клапан будет открыт.

Дифференциальный клапан служит для отделения от жидкости паровой фазы газа и обеспечивает прохождение через счетчик только жидкой фазы. Прохождение через последний паровой фазы увеличивает погрешность установки.

Дифференциальный клапан включается в систему регулирования на выходе параллельно с дросселем ( фиг. Совместное действие двух потоков на плунжер клапана, получаемое при рабочей подаче, преодолевается давлением пружины клапана.

Дифференциальный клапан 4 имеет в своем корпусе калиброванное отверстие, через которое проходит газ при нормальной работе регулятора. Если перепад на клапане превысит усилие пружины, удерживающей клапан, что может получиться при резком изменении расхода газа, клапан открывается и уменьшается перепад давления.

Дифференциальный клапан, установленный на трубопроводе после счетчика, предназначен для предотвращения кипения и превращения в пар сжиженного газа в счетчике. Работа дифференциального клапана основана на разности давлений сжиженного газа и насыщенных паров. Пар поступает в дифференциальный клапан сверху, создавая давление над мембраной, равное упругости насыщенных паров. Сжиженный газ поступает из счетчика в клапан, в полость под мембраной. При этом давление под мембраной окажется больше, чем над ней, и дифференциальный клапан будет открыт. Жидкий газ, измеренный счетчиком, поступает через трубопровод в заполненный резервуар. При поступлении под мембрану пара дифференциальный клапан закрывается и предотвращает проход пара в заполняемый резервуар.

Дифференциальный клапан ДК имеет калиброванное отверстие, через которое проходит газ при нормальной работе регулятора. Если перепад давления на клапане превысит усилие удерживающей его пружины, что может получиться при резком изменении расхода, то клапан откроется и уменьшится перепад давления.

Дифференциальный клапан ДК имеет калиброванное отверстие, через которое проходит газ при нормальной работе регулятора.

Редукционный дифференциальный клапан предназначается для измерения и поддержания в системе разливки заданного давления.

Дифференциальный клапан ДК служит для уменьшения перепада давления на мембране клапана при резких изменениях расхода газа. При нормальной работе регулятора дифференциальный клапан через имеющееся в нем калиброванное отверстие пропускает определенное количество газа. При резком изменении расхода газа перепад давления на клапане увеличивается и по величине может превысить усилие пружины, перекрывающей клапан. В случае предельного увеличения перепада давления на клапане дифференциальный клапан откроется и перепад давления уменьшится.

Гидравлическая схема

Ранее в тексте приводились рисунки, помогающие понять принципы работы гидравлической системы и её составных частей. Мы старались показать конструкцию на различных примерах и использовали различные типы рисунков. Рисунки, которые мы используем, называются графической схемой.

Каждая часть системы и каждая линия изображается графическим символом.

Ниже приведены примеры графической диаграммы.

Важно понять, что назначение графической диаграммы не показать устройство деталей. Графическая диаграмма используется только для показа функций и мест соединений

Классификация линий

Все составные части гидравлической системы соединены линиями. Каждая линия имеет своё название и выполняет свою функцию. Основные линии:

Рабочие линии: Напорная линия, Линия всасывания, Сливная линия

Не рабочие линии: Дренажная линия, Пилотная линия

Масло рабочей линии участвует в преобразовании энергии. Линия всасывания доставляет масло из бака к насосу. Напорная линия доставляет масло от насоса к приводу под давлением для совершения работы и сливная линия возвращает масло от привода обратно в бак.

Не рабочие линии являются дополнительными линиями, которые не используются в основных функциях системы. Дренажная линия используется для возврата в бак лишнего масла или масла пилотной линии. Пилотная линия используется для управления рабочими органами.

Ремонт и неисправности масляного клапана

Конструкция редуктора достаточно простая, это обуславливает его высокую отказоустойчивость и долгий срок эксплуатации. Обычно это бывает связано с износом деталей устройства.

Специалисты выделяют следующие основные неисправности редукторов:

  • Не создается необходимое давление на выходе. Чаще всего причиной неисправности служит пружина. По мере использования и естественного старения пружина теряет упругость. Из-за меньшей силы сжатия клапан никогда до конца не закрывается, и заданный напор не достигается. То же самое может произойти, если при ремонте или обслуживании поставить похожую по размерам пружину, обладающую меньшей упругостью. Неопытные или недобросовестные мастера часто допускают такую оплошность.
  • На выходе получается слишком высокое давление. Это бывает вызвано наличием посторонних предметов внутри механизма, мешающих ему своевременно отсекать подачу. Это могут быть частицы стружки, других механических загрязнений или отложения отработавшего свой срок и загустевшего масла. Такие загрязнения могут привести к заклиниванию деталей клапана и к полному выходу механизма из строя.

Ремонт и обслуживание можно проводить только при полностью отключенных насосах, двигателях и сбрасывании давления в магистрали до нуля. Нарушение этого правила может привести к выбросу масла и деталей клапана, травмированию персонала и повреждению оборудования.

Все детали, включая корпус, надо тщательно промыть в растворителе от остатков масла и других загрязнений и осмотреть. Поврежденные детали следует заменить. Если нет уверенности в упругости пружины, лучше заменить и ее, не дожидаясь сбоев в работе.

Такое обслуживание обычно приурочивают к плановому ремонту двигателя, связанному с частичной разборкой. Если на внутренних поверхностях корпуса или на поверхности золотника обнаружены царапины или задиры, лучше заменить весь клапан.

Компоненты гидравлической системы

Основные компоненты

Гидравлическая система состоит из многих частей. Основными деталями являются насос и привод. Насос подаёт масло, преобразуя механическую энергию в энергию давления и кинетическую энергию. Привод является частью системы, которая преобразует гидравлическую энергию обратно в механическую энергию для выполнения работы. Другие детали, кроме насоса и привода, необходимы для полной работы гидравлической системы.

Бак: хранение масла

Клапаны: контроль за направлением и величиной потока или ограничение давления

Линии трубопровода: соединение деталей системы

Давайте посмотрим на две простые гидравлические системы. 

Пример 1, гидравлический домкрат

Что вы видите на рисунке, называется гидравлический домкрат. Когда вы прилагаете усилие к рычагу, ручной насос подаёт масло в цилиндр. Давление этого масла давит на поршень и поднимает груз. Гидравлический домкрат во многом напоминает гидравлический рычаг Паскаля. Здесь добавлен гидравлический бак. Обратный клапан установлен, чтобы держать масло в баке и цилиндре между ходом поршня.

На верхнем рисунке, давление удерживается, обратный клапан закрыт. Когда ручка насоса тянется вверх, впускной обратный клапан открывается и масло попадает из бака в камеру насоса.

Дальше ручка насоса двигается вниз. Давление масла закрывает впускной обратный клапан, но открывает выпускной обратный клапан. При этом, масло поступает в цилиндр и давит на поршень снизу вверх.

Нижний рисунок показывает открытый запорный клапан для соединения бака и цилиндра, позволяя маслу перетекать в бак, при этом поршень движется вниз.

Пример 2, работа гидравлического цилиндра

1. Во первых, имеется гидравлический бак, заполненный маслом и подсоединённый к насосу.

2. Далее, насос необходим для создания потока, но насос не всасывает масло из бака. Масло попадает в насос под действием силы тяжести.

3. Насос работает и качает масло

Важно понять, что насос перемещает только объём. Объём устанавливает скорость гидравлического действия

Давление создаётся нагрузкой и не создаётся насосом.

4. Шланг от насоса соединён с распределительным клапаном. Масло поступает из насоса к клапану. Работа данного клапана заключается в направлении потока или к цилиндру, или в бак.

5. Следующим шагом является цилиндр, который выполняет фактическую работу. Два шланга от распределительного клапана соединены с цилиндром.

6. Масло из насоса направляется в нижнюю полость поршня через распределительный клапан. Нагрузка вызывает сопротивление потоку, которое в свою очередь создаёт давление.

7. Система выглядит законченной, но это не так. Ещё необходима очень важная деталь. Мы должны знать, как защитить все компоненты от повреждения в случае внезапной перегрузки или другого происшествия. Насос продолжает работать и подавать масло в систему, даже если с системой произошло происшествие. Если насос подаёт масло и нет возможности для выхода масла, давление возрастает до тех пор, пока какая либо деталь не сломается. Мы устанавливаем предохранительный клапан, чтобы предотвратить это. Обычно он закрыт, но когда давление достигает установленной величины, предохранительный клапан открывается и масло течёт в бак.

8. Бак, насос, распределительный клапан, цилиндр, шланги соединения и предохранительный клапан являются основой гидравлической системы. Все эти детали необходимы.

Как работает редукционный клапан

Попробуем разобраться, как работают редукционные клапаны.

Рассмотрим подробнее устройство и работу клапанов прямого и непрямого действия.

Редукционный клапан прямого действия

Принципиальная схема редукционного клапана прямого действия показана на рисунке. Рассмотрим основные элементы и принцип работы редукционного клапана.

Давление жидкости на выходе редукционного клапана в линии отводимой от основной называют редуцируемым.

Золотник 1 расположен в корпусе 2, в котором также установлена пружина 3, ее поджатие регулируется винтом 4.

Давление в напорной линии (Рн) подводится к рабочей полости золотника, не оказывая на него силового воздействия, так как площади поясков золотника равны. Осевыми силами, действующими на золотник являются сила пружины и сила, обусловленная давлением на выходе клапана (Рред). Положение золотника будет определяться силой действия пружины и редуцируемым давлением Рред. Настройка давления на выходе редукционного клапана осуществляется винтом, поджимающим пружину.

При увеличении редуцируемого давления (Рред), золотник, под действием этого давления будет смещаться (вверх по схеме), уменьшая площадь проходного сечения S, увеличивая гидравлическое сопротивление. В результате возросших потерь редуцируемое давление снизиться до величины первоначальной настройки.

При уменьшении редуцируемого давления (Рред) золотник под действие усилия пружины переместится вниз, увеличивая проходное сечение. В результате снижения потерь, давление в отводимой линии достигнет величины настройки.

В редукционном клапане прямого действия на золотник с одной стороны воздействует пружина, а с другой — редуцируемое давление. Усилие пружины зависит от степени ее сжатия, то есть от положения золотника, которое, в свою очередь, зависит от расхода на выходе клапана. В связи с этим при увеличении расходе через редукционный клапан прямого действия будет уменьшаться редуцируемое давление.

Эта особенность работы клапанов прямого действия может оказывать существенное влияние на работу клапана при больших величинах расхода. Поэтому для работы при больших расходах используют редукционные клапаны непрямого действия.

Редукционный клапан непрямого действия

Использование редукционных клапанов непрямого действия позволяет уменьшить влияние расхода на давление.

Схема клапана редукционного непрямого действия показана на рисунке.

Жидкость подводится в клапан через отверстие 9, пройдя через зазор между золотником 5 и седлом в корпусе, жидкость поступает в отовдимую линию 10. Давление жидкости в отводимой линии воздействует на нижний торец золотника. Жидкость из отводимой линии, к тому же, через постоянный дроссель 4 подводится к верхнему торцу золотника и к шарику 1, поджатому пружиной 2, усилие поджатия регулируется винтом 6. Линия 7 соединяется со сливом.

Положение золотника 5 определяется соотношением сил давления в отводимой линии (редуцируемого) и давления в камере 8.

Величина давления в камере 8 зависит от настройки пружины 2, то есть величину давления настройки клапан можно регулировать винтом 6.

В случае увеличения давления в линии отводимой от основной выше давления настройки, шарик отодвинется от седла, пропуская часть жидкости на слив. В результате появления расхода через дроссель 4, давление на верхний торец золотника снизится (из-за потерь на дросселе), золотник под действием редуцируемого давления переместится вверх, уменьшая проходное сечение, что вызовет снижение редуцируемого давления до величины настройки.

Двухсторонний гидроцилиндр, устройство

Существует множество конструкторских решений, которые уже реализованы в металле, они давно и успешно работают. Мы берем в производство самые эффективные и передовые разработки, постоянно совершенствуя их исполнение. Вот только несколько наиболее востребованных конструкций.

Гидроцилиндр двухстороннего действия с двухсторонним штоком

Принцип работы довольно простой. Для создания линейного усилия используется поступательное движение пары шток-корпус:

  • Подвижный корпус имеет сквозное отшлифованное отверстие по всей длине. На его торцевых гранях монтируются соединительные втулки, укомплектованные направляющими кольцами. В них, внутри корпуса, прячется двухсторонний неподвижный шток.
  • Для жесткой фиксации штока на какой-либо базе в нем с обеих сторон могут быть  предусмотрены как резьбовые, так и любые другие виды соединений.
  • Для уплотнения соединения дополнительно на втулку одеваются специальные манжеты.
  • На корпус привариваются цапфы (или другие виды кронштейнов), обеспечивающие качательное движение ведущему звену механизма.

Такая конструкция позволяет добиться устойчиво сбалансированной целиковой пары, где корпус-втулка поступательно движется вдоль штока. Рабочее масло в систему поступает по продольным отверстиям штока.

Внимание! При необходимости у нас можно заказать и гидроцилиндр двухстороннего действия с односторонним штоком. В каталоге вы найдете более подробную информацию

Конструкторская схема двухстороннего гидравлического цилиндра с движущимся корпусом и стационарным двухсторонним штоком.

Гидроцилиндры поршневые двухстороннего действия со штоково-поршневыми противопарами

Часто в станочном оборудовании необходимо исполнить движение ползунковой или каретной пары друг к другу или друг от друга на одинаковое расстояние. Для подобных целей подходит двухсторонний гидроцилиндр, роль поршней в котором выполняют два полуштока.

Неподвижным останется корпус, который разделен на две равные камеры серединными перемычками. Внутри каждой полукамеры визави устанавливаются независимые подвижные штоки с цилиндрами. Разумеется, потребуется надежное уплотнение и общая балансировка механизма.

Для фиксированного закрепления системы в заданном осевом положении в перемычке предусмотрен специальный паз.

Конструкторская схема гидроцилиндра со стационарным корпусом и оппозитно размещенными поршневыми группами

В «ГидроКубе» также можно по выгодной цене купить гидроцилиндры двухстороннего действия с качающимся корпусом.

Конструкция подразумевает в наличии:

  • подвижный сварной корпус, который может качаться в угловых пределах 180 градусов и выше (в зависимости от конфигурации узла, который необходим монтаж). Корпусная гильза с одной стороны приварена к фланцу, а с другой – к крышке, которая, в свою очередь, крепится шарнирно к главной базе через внушительную проушину. Ось крепления определяется бугристой направляющей втулкой, поджатой винтами к фланцу гильзы;
  • рабочую пару поршень+шток, смонтированную посредством гайки.

Ось крепления гильзы имеет два защищенных уплотнениями кольцевых паза, к которым через просверленные отверстия подается масло. Одна сверловка соединяет осевую канавку с полостью поршня, а другая – с полостью штока через трубопровод и штуцера. Сама ось надежно сидит на кронштейне. Соединение защищено фиксирующей планкой, предотвращающей поворот оси.

Конструкторская схема цилиндра гидравлического с качательным движением корпуса

В такой конструкции подача масла в каждую полость подвижной гильзы не требует гибких шлангов, что немаловажно для безопасности мощных систем, работающих под высоким давлением

Гидравлический цилиндр двухстороннего действия с высокими поперечными усилиями на шток

В этом конструкторском решении шток сидит на втулке с дополнительным уплотнением. Длина втулки увеличена, что дает возможность распределить нагрузку на направляющие втулочные кольца, так как они расположены дальше друг от друга. Корпус гидроцилиндра в этом силовом варианте ставится на раму, снабженную стопорными полукольцами, которые затем стягиваются кольцом.

Гидравлический цилиндр двухстороннего действия с высокими поперечными усилиями на шток

Это интересно: Вакуумный пресс — конструкция, выбор техники, сферы применения

Расчет гидравлической системы

При проектировании подобных устройств принимается во внимание множество самых разных факторов. К таковым можно отнести, к примеру, кинематический коэффициент вязкости жидкости, ее плотность, длину трубопроводов, диаметры штоков и т

д.

Основными целями выполнения расчетов такого устройства, как гидравлическая система, чаще всего является определение:

  • Характеристик насоса.
  • Величины хода штоков.
  • Рабочего давления.
  • Гидравлических характеристик магистралей, других элементов и всей системы в целом.

Производится расчет гидравлической системы с использованием разного рода арифметических формул. К примеру, потери давления в трубопроводах определяются так:

  1. Расчетную длину магистралей делят на их диаметр.
  2. Произведение плотности используемой жидкости и квадрата средней скорости потока делят на два.
  3. Перемножают полученные величины.
  4. Умножают результат на коэффициент путевых потерь.

Сама формула при этом выглядит так:

∆pi = λ х li(p) : d х pV2 :2.

В общем, в данном случае расчет потерь в магистралях выполняется примерно по тому же принципу, что и в таких простых конструкциях, как гидравлические системы отопления. Для определения характеристик насоса, величины хода поршня и т. д. используются другие формулы.

Сфера использования

Широкое применение системы этого типа нашли:

  1. В промышленности. Очень часто гидравлика является элементом конструкции металлорежущих станков, оборудования, предназначенного для транспортировки продукции, ее погрузки/разгрузки и т. д.
  2. В авиакосмической отрасли. Подобные системы используются в разного рода средствах управления и шасси.
  3. В сельском хозяйстве. Именно через гидравлику обычно происходит управление навесным оборудованием тракторов и бульдозеров.
  4. В сфере грузоперевозок. В автомобилях часто устанавливается гидравлическая тормозная система.
  5. В судовом оборудовании. Гидравлика в данном случае используется в рулевом управлении, входит в конструктивную схему турбин.

Функции управления

Дистанционное управление и обратные клапаны

EL Клапаны, управляемые соленоидами

Встроенный или внешний соленоидный клапан, включаемый переменным электрическим током или пульсом постоянного тока, открывает или закрывает главный клапан. Электрическое управление возможно для большинства функций управления, перечисленных ниже.

Клапаны для снижения давления

PR Поддержание давления «после себя»

Поддерживают постоянное давление на выходе, независимо от колебаний давления и расхода на входе.

Клапаны для поддержания и сброса давления

PS Клапаны для поддержания давления «до себя»

PS(R) Клапаны для аварийного сброса давления

Поддерживают давление на входе независимо от изменения расхода. Клапан закрывается, если давление на входе падает ниже установленного. Если давление на входе выше установленного, клапан полностью открывается. Темп открытия и закрытия регулируется.

Клапаны для управления расходом

FR Клапаны для управления расходом

Ограничивают расход до установленного уровня независимо от колебаний давления. Клапан полностью открывается, когда расход падает ниже установленного.

FE Закрытие при превышении установленного расхода

Клапан полностью закрывается, когда расход превышает установленный максимум (например, при разрыве трубы). Открытие после этого возможно только вручную.

Клапаны для управления уровнем жидкости

FL Клапан, управляемый поплавком

Главный клапан управляется поплавковым краном, установленном в емкости на требуемом уровне.

Постоянно поддерживает максимально возможный уровень.

FLDI Дифференциальный клапан, управляемый поплавком

Трех- или четырехходовой поплавковый кран управляет главным клапаном, закрывая его, когда вода достигает максимального уровня и открывая, когда уровень достигает установленного минимума.

Разность между максимумом и минимумом регулируется.

AL Клапан, управляющий уровнем жидкости

Главный клапан управляется высокочувствительным пилотным регулятором, который устанавливается вне емкости. Регулятор открывает или закрывает клапан в соответствии со статическим давлением воды.

Разность между максимумом и минимумом задается пилотным регулятором.

Дополнительная возможность: предотвращение гидроударов (SP).

Клапаны для управления насосами

ВС Клапан для управления насосом

Защищает от резких изменений давления, возникающих при запуске и остановке насоса.

Электрическое управление плавно открывает кран при запуске насоса и медленно закрывает его перед остановкой насоса.

DW Клапан для управления глубинными насосами

Устраняет резкие изменения давления, возникающие при запуске и остановке глубинных погружных насосов.

Это клапан сброса давления, монтируемый на отводе главного трубопровода. При запуске насоса клапан медленно закрывается, постепенно повышая давление в сети.

Перед остановкой насоса клапан медленно открывается, снижая давление в сети.

RE Защита от гидроударов

Клапан защищает насосные станции от гидроударов, возникающих в результате внезапной остановки насосов (например, в результате перебоев в электроснабжении). Это клапан сброса давления, монтируемый на отводе главного трубопровода. Клапан открывается немедленно при остановке насоса, сбрасывая высокое давление от обратной волны. Когда давление возвращается на статический уровень, клапан медленно закрывается.

Он также используется как предохранительный клапан для быстрого сброса давления.

Особые функции управления

DI-клапаны, поддерживающие разность давления

Клапан поддерживает заданную разность между давлением на входе и на выходе.

Используются для управления производительностью насосов, в системах отопления и охлаждения, в различных конфигурациях байпасов и др.

SP-Предотвращение гидроударов

Устройство автоматически регулирует скорость закрытия клапанов, расположенных в конце длинных трубопроводов, предотвращая гидроудары и резкое повышение давления.

Как устроен редуктор давления воды: схема и конструкция

Главный принцип функционирования предельно прост: жидкость действует на внутренние клапаны, отклоняя их в ту или иную сторону. Затворам удается сохранять исходное положение за счет встроенных пружин. В случае возрастания водного напора пружинные элементы сжимаются, что заставляет клапанную тарелку сдвинуться к седлу регулятора. В результате удается снизить критические показатели.

Все это действует и в обратном направлении: если давление изначально были слишком низким, прибор высвободит дополнительные потоки в трубопроводе, раскрыв клапаны.

Ключевая характеристика РДВ – полная автономность работы. Так, вам не придется прибегать к помощи сторонних механизмов или приспособлений. Хватит одной установки редуктора, его подключения к трубопроводу. Уже это позволит регулировать водные потоки, контролируя основные показатели.

Возможные последствия наличия загрязнений

Существует два основных следствия от наличия загрязняющих веществ в составе гидравлической жидкости:

  • Падение эффективности гидравлики. Это приводит к резкому снижению КПД всего оборудования/техники. Обычно эффективность падает постепенно и ее трудно обнаружить, если проверяющий специалист не обладает нужными познаниями и опытом. Как минимум подобный эффект приведет к резкому возрастанию расхода топлива.
  • Наличие загрязнений ускоряет износ деталей, входящих в состав гидравлической системы. Как показывает статистика, 75-85 процентов неисправности важнейших элементов гидравлики связано именно с наличием загрязнений в используемой жидкости. Существует три основных типа износа: абразивный, адгезионный, усталостный.

Износ абразивного типа Наличие абразивных частиц в гидравлической жидкости приводит к соскабливанию металла с элементов этой системы. Это не только ускоряет износ важнейших компонентов гидравлики, но и повышает общий уровень загрязненности, что ускоряет проявление различных неприятностей.Износ усталостного типа Высокое давление, а также ударные нагрузки, постоянно оказывающие воздействие на изделия, входящие в состав гидравлической системы, являются причиной появления стружки из металла, которая еще больше загрязняет гидравлическую жидкость.Износ адгезионнного типа или облитерация Разнообразные частицы, находящиеся в составе гидравлической жидкости, начинают прилипать к металлическим поверхностям системы. Итог — клапаны перестают правильно функционировать, а сама жидкость не может эффективно циркулировать в системе.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Лига Скорость
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: