Технические характеристики и описание электромобилей tesla

Модификации

По мере производства двигатель УД-25 изменялся. На него устанавливали различные навесные модули, однако принцип работы и основа мотора остались неизменными. Следовательно, покупатели имели возможность выбора между некоторыми модификациями. В частности, двигатели были с разными топливными насосами, карбюраторами и другим навесным оборудованием.

Также на ульяновском заводе выпускался двигатель УД-15, который представлял собой аналог рассматриваемого нами мотора без одного цилиндра. Для этих двигателей подходят одинаковые запчасти, да и эксплуатация осуществляется так же, как и ремонт.

Главная проверка составляющих топливной аппаратуры

  • Подача дизельного топлива при помощи насоса. Таким образом, проверяется равномерность подачи дизеля, давление, количество горючего;
  • Характеристики работы насоса. Таким образом, проверяется скорость вращения вала, когда запускается мотор и при прекращении подачи топлива;
  • Проверяется режим подачи дизеля частями топливного насоса под высоким давлением;
  • Кроме того проверке подвержены форсунки.

После того как происходит диагностика подобных элементов системы подачи топлива специалисты могут вынести объективную оценку состоянию топливной системе, выяснить в какой последовательности будут проходить ремонтные работы дизельного движка (ремонт форсунок, капитальный ремонт, ремонт ТНВД, ремонт баков для топлива), кроме того это поможет рассчитать затраты на ремонт топливной аппаратуры дизельных двигателей.

Ремонт дизельного двигателя состоит из суммы следующих выполненных работ

  • Ремонт топливного насоса высокого давления;
  • Починка турбин;
  • Настройка деятельности форсунок;
  • Установка фильтра очистки;
  • Промывание системы специально предназначенными для этого растворами.

Дизельный движок нуждается в особом отношении от хозяина, водитель должен внимательно относиться к двигательному мотору, соблюдать все правила использования двигателя, с той целью того чтобы ремонт топливной аппаратуры дизельных двигателей производился по плану. При сложном устройстве мотора необходимо использовать специальное оборудование при диагностике, а также ремонте двигателей в Твери, в данном случае дизельный автомобиль прослужит долго и без поломок. Так как очень часто ремонтные работы дизельных двигателей необходимо производить по той причине, что хозяин не выполнял нормы обращения с дизельным мотором, которые хорошо известны всем.

Каждый водитель дизельного автомобиля отлично знает, что очень высокие скорости – не для дизельного двигателя, в зимнее время нельзя заправляться зимней соляркой, кроме того нельзя использовать для системы охлаждения воду.

Существуют некоторые признаки, которые помогут в определении того нужен ли ремонт: мотор плохо запускается при минусовой температуре, сниженная мощность, при езде вы услышите постукивание, а если разгонитесь, то мотор и вовсе глохнет. Поэтому при всех преимуществах двигатель нужно периодически проверять, чтобы ремонт ограничивался, только профилактическими мероприятиями. Ремонт дизеля осуществляется при поддержке необходимых параметров, а также дозировки топлива.

При этом всегда необходимо помнить важную роль в этом моторе отводится форсунке – элемент, который выполняет впрыск в камеру сгорания. Данный элемент топливной аппаратуры, куда подается высокое давление горючего. Если в форсунке имеется низкое давление, тогда форсунка откроется раньше, чем появится черный дым. Если же давление слишком высоко, то форсунка откроется намного позже — белый дым.

  • Ремонт двигателей легковых автомобилей
  • Ремонт коробок передач рено
  • Ремонт генераторов в автосервисе или гаражный ремонт — выбирать вам

Вернуться

Диагностика двигателя эндоскопом

Эндоскоп – прибор, с помощью которого можно посмотреть состояние двигателя изнутри, без его разборки. Проверка эндоскопом так же существует в медицине. И как врач ставит более точный диагноз после эндоскопического исследования того или иного органа, так и проверка, например, цилиндров двигателя эндоскопом позволяет максимально точно определить состояние, характер и степень неполадки, и, как следствие, позволяет сделать более точные рекомендации по ремонту и дальнейшей эксплуатации агрегата.

Диагностика двигателя эндоскопом – распространенная процедура. Автовладельцы, которые проверили двигатель своего автомобиля этим способом, всегда хорошо отзываются. С помощью эндоскопа можно проверить цилиндры, клапана и проверить состояние поршневой группы. Эндоскопическое исследование цилиндров дает долгожданный ответ тем, кто хочет видеть что происходит с цилиндрами, насколько изношена хоминговка гильз, зазор между поршнем и цилиндром. Если обычная диагностика цилиндров не дает ответа на вопрос, его почти гарантированно даст эндоскоп.

Проверить задиры на двигателе эндоскопом, можно самостоятельно и некоторые автомобилисты так и поступают. Однако стоит отметить, что очень многое в таком исследовании зависит от 2 факторов. Первый – качество самого прибора – эндоскопа. Прибор, купленный с рук или заказанный Китае, не может гарантировать точного результата диагностики двигателя, поэтому риск от проведения такой диагностики весьма и весьма велик. Второй – опыт того, кто будет проводить диагностику двигателя эндоскопом. Без определенного опыта и знаний качественно оценить повреждения двигателя не удастся.

Ассортимент продукции

В целом автопроизводителю удалось создать электродвигатели трех видов:

  • двигатель главного типа, в котором предусматривается наличие заднего привода;
  • двигатель меньших размеров, в котором установлен передний привод — его используют для двухмоторной версии модели S и Model X;
  • более крупная задняя приводная версия, имеющая рабочие характеристики двигателя.

После обновления характеристик производительности «Тесла» изменил номер своего основного двигателя с задним приводом. Впоследствии все версии, затронутые обновлением, будут оснащены электродвигателем «Тесла», в то время как все автомобили без него, модели S P100D и Model X P100D, не получили каких-либо улучшений производительности. Мощность мотора составляет 416/362/302 л. с.

Компания не хотела комментировать новый блок привода, но это должно было стать значительным обновлением, поскольку оно позволяет ускорить движение от 0 до 60 миль/час более чем на 1 секунду.

Коленчатый вал

Главной деталью кривошипного механизма является стальной коленчатый вал, установленный в картере двигателя на двух шариковых подшипниках. На переднем конце вала имеется маховик, обеспечивающий равномерность работы двигателя. Маховик изготовлен из чугуна, отбалансирован и имеет особые направляющие лопатки, подающие охлаждающий воздух на цилиндры двигателя.

Рядом с маховиком установлена шестерня для запуска двигателя стартером. Оба конца вала имеют сальники, предотвращающие течь масла из картера. От осевого перемещения вал зафиксирован специальными кольцами, установленными в проточках на картере.

Платформа из аккумуляторных батарей

Асинхронный двигатель надо чем-то питать. Поэтому, в автомобилях Тесла используется блок-платформа из литий-ионных аккумуляторов. Этот блок из батарей выдает постоянный ток.

Такой блок состоит из маленьких простых li-ion батареек

Решетка, которая частично держит батарейки, также является радиатором, по которой бежит антифриз

такой тип радиатора очень эффективен, так как он охлаждает все батарейки равномерно.

Все эти батарейки собираются в небольшие модули

Платформа состоит из нескольких таких модулей

В живую это выглядит примерно вот так:

Антифриз, который охлаждает платформу из батарей, охлаждается в передней части автомобиля на автомобильном радиаторе

Также можно увидеть, что тяжелая платформа из батареек близко находится к земле, поэтому низкий центр тяжести улучшает управляемость и стабильность автомобиля.

Стоимость такой батареи-платформы более 12 000 долларов, а вес более полтонны. Пока что платформа-батарея является самой дорогой частью автомобиля. Да и вообще, проблема всех электрокаров – это дорогие аккумуляторы. Если ученые разработают дешевые и очень емкие аккумуляторные батареи, то придет конец эпохе ДВС.

Как устроен электромобиль Tesla

Под капотом нет всего того, что мы привыкли видеть в машине с двигателем внутреннего сгорания. Здесь вместо него багажник.

Сзади то же самое. Багажник довольно объемный, при желании здесь можно установить детские кресла, обращенные лицом к стеклу.

Согласно US Environmental Protection Agency (EPA) заряда литий-ионного аккумулятора емкостью 85 кВт⋅ч хватает на 426 км, что позволяет Model S преодолевать наибольшую дистанцию из доступных на рынке электромобилей. Изначально в планах Tesla было начать в 2013 году производство автомобилей с аккумуляторами емкостью 60 кВт⋅ч (335 км) и 40 кВт⋅ч (260 км), однако из-за малого спроса от модели на 40 кВт⋅ч решено было отказаться. Базовая модель S использует жидкостное охлаждение двигателя переменного тока, который производит 362 лошадиных силы.

В основе аккумулятора автомобиля (их 16 блоков) находится около 7 тысяч пальчиковых батареек уложенных с особым распределением положительных и отрицательных контактов, который хранится в секрете.

Заглянем внутрь машины. Вместо привычных приборов на панели, здесь жк монитор, на котором все нужные функциональные кнопки и информация о рабочем состоянии автомобиля.

История Tesla: с 1997 года до наших дней

Дружеские отношения между Марком Тарпеннингом и Мартином Эберхардом завязались задолго до основания Теслы. Так еще в середине 90-х гг. прошлого века они запустили свой первый, общий бизнес, который, однако, долго не просуществовал.

В 1997 году Эберхард лично протестировал автомобиль Tzero от компании AC Propulsion, работающий на уникальной свинцово-кислотной батарее. Машина на тот момент не имела аналогов в мире, а ее характеристики произвели на Мартина неизгладимое впечатление. В итоге он принял решение инвестировать в AC Propulsion порядка полумиллиона долларов, с целью модернизации Tzero и выпуска на его основе уникального электрокара на литий-ионной батарее.

Но до серийного выпуска обновленной модели автомобиля Tzero так и не дошло. Главной причиной этого стал тот факт, что после установки электродвигателя цена ТС по разным подсчетам превысила 200 тысяч долларов. Вот только первая неудача никак не повлияла на намерение Эберхарда и Тарпеннинга открыть собственное производство электрокаров, которое они все же воплотили в жизнь, в 2003 году.

Весной 2003 года Марк Тарпеннинг стал официальным владельцем домена teslamotors.com. Днем рождения компании Тесла считается 1 июля 2003 года. К этому моменту у основателей фирмы уже имелась в наличии детально просчитанная проектная модель будущего электрокара. Марк Тарпеннинг и Мартин Эберхард отлично понимали, что как такового опыта в производстве автомобилей у них

Поэтому они планировали сконцентрировать свое внимание исключительно на сборке инновационных электрических двигателей, сборке авто и их продаже, тогда как все остальные запчасти должны были закупаться у известных мировых автопроизводителей

  • Лето 2012 года — анонс второго в своей истории серийного кара Model S. Первый кроссовер имел запас хода до 426 километров от одной подзарядки АКБ.
  • 12 июня 2014 года — Тесла официально сообщила о том, что все желающие могут использовать патенты ее компании, без риска получить от бренда судебный иск за нарушение авторских прав.
  • Осень 2014 года — Илон Маск провел презентацию системы полуавтономного вождения Tesla Autopilot. 
  • Осень 2015 года — старт продаж Model X — полноразмерного внедорожника на электрическом двигателе, с автоматически открывающимися передними дверями. Автомобиль стал первой моделью, сборка которой осуществляется на собственном заводе корпорации, построенном в Калифорнии. 
  • Начало 2017 года — старт продаж седанов с электродвигателем Model 3. Электрокар стал самым бюджетным автомобилем производителя — его стоимость стартует с отметки в 35 тысяч долларов. Собирается в Калифорнии. Запас хода 354 километра. 
  • Весна 2017 года — Илон Маск рассказывает о планах бренда на разработку первого серийного грузовика на электромоторе.
  • Март 2019 года — громкая презентация электромобиля Model Y. Одновременно с этим становится известно, что Тесла приобрела компанию, специализирующуюся на производстве батареек Maxwell.
  • Ноябрь 2020 года — Tesla совместно с еще 26 американскими компаниями создают организацию ZETA, главной задачей которой является активная пропаганда перехода на электрические авто в различных сферах деятельности человека.

По состоянию на середину 2021 года Тесла с полным правом является самым крупным и успешным производителем электромобилей в мире.

Особенности конструкции мотора

Рассмотрим характеристики электродвигателя «Тесла». Приводы Tesla построены с использованием запатентованного процесса сборки, который включает в себя:

  • электродвигатель,
  • узел преобразователя мощности,
  • коробку передач в единый многосекционный корпус.

В прошлом году стало известно, что Tesla разрабатывает новую силовую электронику с нуля вместо использования внеоболочных компонентов для привода модели 3. Архитектура инвертора позволит задействовать электродвигатель «Тесла» мощностью более 300 кВт, что приближает его к показателям производительности модели S. Но также подразумевается, что Tesla, скорее всего, обновит модель S, чтобы еще больше дифференцировать ее повышенную производительность от меньшего дорогой модели 3. Характеристики электродвигателя автомобиля «Тесла» обеспечивают перспективность его популярности.

Генератор переменного тока

Генератор переменного тока — это электрическая машина, которая является составной частью полифазной системы электроснабжения Теслы, о которой речь пойдёт ниже. Генератор создаёт переменный ток, используя механическую работу (например, генераторы, установленные на дамбах, использующие падающую на их лопасти воду).

Мы не будем объяснять принцип работы генератора. Посмотрите видео ниже, если хотите понять подробнее.

Альтернатор Теслы (другое название генератора переменного тока) превосходил все другие по той простой причине, что он был действительно эффективен на практике. Свой генератор Тесла изобрёл ещё будучи на 2 курсе и уже тогда обращался к своим преподавателям с идеей использования переменного тока, но от его идей все отмахивались, как от бредовых. Некоторые профессора даже просто смеялись над его изобретениями.

В 1882 году Тесла работает в Париже и создаёт первый рабочий прототип своего генератора.

Приехав в 1884 году в США, Тесла направился к тогда уже известному изобретателю и коммерсанту в области электричества Томасу Эдисону и устроился к нему на работу. Попутно Тесла предлагал Эдисону свои идеи по использованию переменного тока, но Эдисон считал, что он сошёл с ума, раз думает, что переменный ток можно хоть как-то использовать. Дошло даже до того, что Тесла, не поняв сарказма Эдисона, подумал, что получит большую сумму от Эдисона, если сделает несколько десятков определённых изобретений на заказ. Тесла их сделал, а Эдисон сказал, что пошутил, а Тесле рекомендовал научиться понимать американский юмор.

В 1891 году Тесла получает в США патент на первый в мире альтернатор.

Генератор переменного тока 1891 года

Патент Теслы на генератор переменного тока

Многофазный генератор Теслы мощностью 500 л.с. (около 370 кВт) на выставке Вестингауза

Немного о ходовой части

Мы уже немного познакомились с автомобилем тесла. «Модель S», характеристики которой мы рассматриваем, по большей части создавалась с нуля. То есть разработчики не заимствовали технологии у других ведущих производителей автомобилей, таких как «Ауди», «БМВ» и т. п. Именно поэтому практически все детали уникальны и не используются больше нигде.

Отчасти это справедливо и для подвески автомобиля. Пневматическая ходовая позволяет владельцу изменять клиренс. Его можно поднять, если дорога низкого качества, или максимально снизить для агрессивной езды по скоростной трассе. Руль оснащается электроусилителем. Но и тут есть несколько интересных особенностей. К примеру, многоуровневая система изменения жесткости руля. Для спокойной и размеренной езды можно снизить жесткость на минимум и сделать управление максимально мягким. Хочется быстрой езды? Не проблема, делаем руль максимально жестким, и машина будет отзываться на малейший его поворот без промедления.

Коробка передач

Как же передается вращение от двигателя к колесам?

Для этого используется коробка передач

коробка передач в автомобилях Тесла

В автомобилях Тесла используется простая односкоростная коробка передач, так как крутящий момент двигателя почти равномерный на всех оборотах.

Если разобрать коробку, то можно увидеть ее простую конструкцию

Вращение вала двигателя приводит к вращению шестеренки, которая передает вращающий момент на колеса автомобиля

Даже обратный ход достигается тем, что инвертор меняет две фазы на асинхронном двигателе местами, и двигатель будет вращаться в другую сторону.

Переменный ток

DC — постоянный ток, AC — переменный ток

Прежде чем научиться использовать переменный ток, его необходимо сначала получить. В общем-то о переменном токе физики знали уже давно (со времён открытия электромагнитной индукции) и Тесла его как таковой не открывал, но тогда все полагали, что переменный ток — это попросту «мусор», который вряд ли как-то получится использовать. Тесла же был другого мнения и сразу увидел весь потенциал переменного тока.

Постоянный ток непрерывно течёт в одном направлении; переменный ток меняет своё направление 50 или 60 раз в секунду и у него можно изменять напряжение до высоких уровней, минимизируя при этом потери мощности на больших расстояниях. Позже напряжение переменного тока можно понижать, чтобы использовать его на заводах или в жилых домах. Тесла понял, что будущее принадлежит переменному току.

Тесла описал свои двигатели и электрические системы в статьей «Новая система двигателей переменного тока и трансформаторов», которую он презентовал в Американском институте инженеров-электриков в 1888 году. Именно тогда Джордж Вестингауз заинтересовался разработками Теслы, и однажды он посетил его лабораторию и поразился увиденному. Никола Тесла построил модель многофазной системы из понижающих и повышающих трансформаторов переменного тока, а также двигателя переменного тока. Так началось партнёрство Ветсингауза и Теслы. Позже Никола Тесла получил 40 патентов на свои изобретения в США, а Вестингауз выкупил их все, чтобы обеспечить себя богатством, а Америку переменным током.

Ниже мы как раз и поговорим об этих машинах и о том, как в США внедрялась многофазная система электроснабжения.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  • Блок цилиндров . Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  • Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).

Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  • Система питания . В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  • Система смазки . Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  • Система охлаждения . Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора

А это одна из важнейших характеристик любого мотора.

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE

Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор

Почему асинхронный двигатель лучше, чем ДВС

График зависимости крутящего момента (Н⋅м) от оборотов двигателя внутреннего сгорания (ДВС) выглядит примерно вот так:

Поэтому, соединять вал двигателя ДВС напрямую с колесами – так себе идея.

В этом случае требуется трансмиссия и коробка передач

Также не забывайте, что линейное движение поршней должно быть преобразовано во вращательное движение. Это очень трудоемкий процесс, так как приходится балансировать весь двигатель, чтобы было как меньше вибраций при работе.

Да и для того, чтобы запустить такой двигатель, нам также понадобится стартер. А как вы знаете, без аккумулятора стартер не заведется. Ну или “с толкача”).

Еще один минус ДВС в том, что выдаваемая им мощность очень неравномерна, поэтому надо использовать маховик.

К очевидным минусам ДВС можно также добавить его высокую стоимость, выбросы выхлопных газов в окружающую среду, высокую стоимость топлива, ограниченный ресурс, так как очень много трущихся деталей, низкий КПД, сильный шум, большой вес, замена расходников, а также, как мы уже говорили, требуется обязательно коробка переключения передач.

Достоинства

Описать все достоинства электромобилей Tesla сложно, что-то непременно останется не охваченным. В дополнение к изложенному, стоит упомянуть такие момент как:

  1. 17 дюймовый (другой в бюджетных моделях) сенсорный монитор, вертикально расположенный справа от водителя, с которого осуществляется управление всеми функциями и устройствами автомобиля.
  2. Просторный салон, ровный пол без трансмиссионного канала, два багажника по причине отсутствия под капотом двигателя.
  3. Повышенная безопасность, обеспечиваемая не только восьмью подушками, но и в целом конструкцией кузова. Автомобиль проходит все краш-тесты на 5 из 5 возможных звезд.

Признаки неисправности дизельного двигателя

Запуск двигателя затруднен

Износ нагнетательных элементов насоса высокого давления. Неправильный угол опережения подачи топлива в двигателе. Износ распылителей, вызывающий плохое распыление топлива. Слишком низкое давление впрыска.

Нехватка топлива перед насосом высокого давления из-за попадания воздуха в систему подачи топлива. Неисправности подкачивающего топливного насоса. Слишком малая доза топлива при запуске, вызванная неправильной работой регулятора. Загустение топлива зимой. Неисправны свечи накаливания.

Снижение мощности двигателя

Износ прецизионных элементов топливного насоса высокого давления или регулятора. Неправильная регулировка насоса или всережимного регулятора. Неправильный угол опережения впрыска. Износ или повреждение распылителей. Чрезмерное снижение давления впрыска. Недостаточное количество топлива, подаваемого системой нагнетания, из-за засорения топливного фильтра, недостаточной производительности подкачивающего топливного насоса или попадания воздуха в топливную систему.

Повышенный расход топлива

Неверный угол опережения впрыска. Износ нагнетательных элементов насоса высокого давления. Неправильная регулировка насоса высокого давления. Износ или повреждение распылителей. Слишком большое снижение давления впрыска. Загрязнен воздушный фильтр. Утечка топлива. Недостаточная компрессия.

Черный дымный выхлоп

Плохое смесеобразование в камере сгорания из-за нагара или неплотного закрытия клапанов. Поздний впрыск топлива. Плохое распыление топлива форсунками. Неверные зазоры в клапанах. Недостаточная компрессия.

Серый или белый дымный выхлоп

Неверное опережение впрыска. Недостаточная компрессия. Пробита прокладка головки блока. Переохлаждение двигателя.

Жесткая работа двигателя

Слишком ранний впрыск топлива. Большая разница между дозами топлива, впрыскиваемого в разные цилиндры двигателя. Неправильная работа некоторых форсунок. Недостаточная компрессия.

Перегрев двигателя

Неправильный угол опережения впрыска. Плохое распыление топлива форсунками (струя вместо «факела»).

Не развивается полная мощность двигателя

Короткий ход у педали акселератора, неправильно отрегулирована тяга педали акселератора. Загрязнен воздушный фильтр. Воздух в системе питания. Повреждены топливопроводы. Неисправны крепления распылителей (форсунок). Распылители неисправны. Сбит угол опережения впрыска топлива. Неисправен топливный насос высокого давления.

Повышенный расход топлива

Негермётична система питания. Забит топливопровод слива (от насоса к топливному баку). Высокие обороты холостого хода или же сбито опережение впрыска. Плохо работает двигатель. Неисправны распылители, неисправны форсунки. Неисправен топливный насос высокого давления.

Повышенный шум двигателя

Загрязнения в системе питания, вследствие чего не работают распылители. Уплотнительные шайбы под распылителями отсутствуют или плохо установлены, распылитель слишком сильно (слишком слабо) завернут в головку цилиндров. Воздух в системе питания.

Неравномерная работа двигателя на холостом ходу

Неправильно установлены обороты холостого хода. Затруднен ход педали акселератора. Ослаб топливопровод подачи топлива между топливным насосом высокого давления и топливным фильтром. Повреждена опорная пластина насоса высокого давления. Неисправности в подаче топлива. Неисправны распылители, неисправны форсунки. Неправильное опережение впрыска.

Колебания частоты оборотов коленчатого вала

Износ регулятора оборотов. Разрегулирование или износ системы впрыска. Чрезмерное сопротивление перемещению элементов в системе регулирования. Попадание воздуха в топливную систему. Избыточное давление газов в картере.

Внезапная остановка двигателя

Смещение угла опережения нагнетания (нарушение соединения насоса с приводом). Засорение топливного фильтра и нехватка топлива, подаваемого в насос. Отсутствие подачи топлива, вызванное повреждением топливного насоса высокого давления или подкачивающего насоса. Повреждение трубопровода впрыска. Износ и перекос поршня-разделителя, ротора или поршней насоса высокого давления.

Часто выходят из строя калильные свечи

Неисправны форсунки в соответствующих цилиндрах.

Невозможно заглушить двигатель

Неисправен запорный электромагнитный клапан.

Повышается уровень моторного масла в картере

Течь через уплотнитель цепного или шестеренчатого привода насоса высокого давления.

Слабое торможение двигателем

Засорены сливные топливопроводы. Неверно установлены ускоренные обороты холостого хода.

Что означает три фазы?

Основываясь на основных принципах Никола Теслы, определенных в его многофазном асинхронном двигателе, выпущенном в 1883 году, «три фазы» относятся к токам электрической энергии, которые подаются на статор через аккумулятор автомобиля. Эта энергия приводит к тому, что проводящие проволочные катушки начинают вести себя как электромагниты. Таким образом обеспечивается работа электрического двигателя.

Поскольку эта технология продолжает развиваться, производительность электрических автомобилей начинает быстро догонять и даже превосходить их газовые аналоги. Несмотря на то что электромобили остаются на некотором расстоянии, скачки, которые делали такие компании, как Tesla и Toyota, вдохновили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

Платформа из аккумуляторных батарей

Асинхронный двигатель надо чем-то питать. Поэтому, в автомобилях Тесла используется блок-платформа из литий-ионных аккумуляторов. Этот блок из батарей выдает постоянный ток.

Такой блок состоит из маленьких простых li-ion батареек

Решетка, которая частично держит батарейки, также является радиатором, по которой бежит антифриз

такой тип радиатора очень эффективен, так как он охлаждает все батарейки равномерно.

Все эти батарейки собираются в небольшие модули

Платформа состоит из нескольких таких модулей

В живую это выглядит примерно вот так:

Антифриз, который охлаждает платформу из батарей, охлаждается в передней части автомобиля на автомобильном радиаторе

Также можно увидеть, что тяжелая платформа из батареек близко находится к земле, поэтому низкий центр тяжести улучшает управляемость и стабильность автомобиля.

Стоимость такой батареи-платформы более 12 000 долларов, а вес более полтонны. Пока что платформа-батарея является самой дорогой частью автомобиля. Да и вообще, проблема всех электрокаров – это дорогие аккумуляторы. Если ученые разработают дешевые и очень емкие аккумуляторные батареи, то придет конец эпохе ДВС.

Техническое обслуживание двигателя автомобиля сразу после покупки

Первые 3–5 тысяч километров пробега нового автомобиля являются самым важным периодом, в течение которого владелец должен действовать грамотно, чтобы обеспечить долгий срок беспроблемной службы машины. Детали всех узлов и агрегатов еще притираются друг к другу, поэтому не следует по полной нагружать машину и давать максимальные обороты двигателю. Полный прогрев движка перед началом движения позволяет обеспечить устойчивую работу ДВС на холостом ходу без «подсоса».

Первая поездка на автомобиле требует проведения ряда обязательных манипуляций. В их числе: протяжка резьбовых соединений, замер давления воздуха в шинах манометром, проверка наличия и уровня технических жидкостей и масел в ДВС, КПП, мостах и бачке гидроусилителя руля (при его наличии) либо в рулевой колонке, антифриза — в радиаторном бачке, тормозной жидкости — в бачке главного тормозного цилиндра и гидравлике сцепления (если таковая имеется), топлива — в баке. С помощью нагрузочной вилки нужно проверить заряд аккумулятора, уровень и плотность электролита и обязательно закрепить батарею специальным удерживающим устройством на положенном месте, затянуть клеммы согласно их полярности. Необходимо протестировать работу систем стеклоочистки и омывателей (есть ли жидкость в бачках, работают ли распылители).

Перед первым запуском мотора нужно произвести подкачку топлива бензонасосом в карбюратор. После запуска двигателя водителю стоит тщательно проверить, нет ли подтекания масла, топлива, тосола или антифриза. Пусть мотор поработает вхолостую, потом нажмите на акселератор, плавно добавив обороты, и прислушайтесь. Если посторонних подозрительных шумов нет, можно начинать движение.

Как заряжать теслу

Простой ответ – легко и просто.

Простая математика и базовый курс электротехники, 8й класс средней школы.

Помним что мощность выражается в киловаттах и равна силе тока в амперах, помноженной на напряжение в вольтах.

А емкость батарейки теслы равна либо 60 КВт-ч, либо 85 КВт-ч, в зависимости от модификации.

И еще помним что штатное зарядное устройство работает в диапазоне 100-240V 50-60Hz. Проблем с российскими электросетями нет никаких.

Главное три фазы не подать но абстрактный имярек без бойца-электрика с этой задачей не справится, а неумные бойцы-электрики в природе встречаются крайне редко, естественный отбор все дела.

Беспроводное освещение

В 1891 году Тесла усовершенствовал передатчик волн, изобретённый Герцом, который был необходим для радиочастотного снабжения энергией, переделав его в систему освещения, состоящую из газоразрядных ламп.

В этом же году он продемонстрировал в Колумбийском колледже своё изобретение.

В руках у Теслы две длинные трубки Гейсслера , которые похожи на неоновые лампы.

В 1893 году в Чикаго проходит всемирная выставка, где Тесла демонстрирует своё изобретение. Лампы были не только беспроводными, но и люминесцентными.

В 1894 году новое достижение. Удаётся зажечь фосфорную лампу накаливания в своей лаборатории, используя резонансный метод взаимоиндукции.

Правда широкого коммерческого применения такая лампа найти не смогла, но резонансный метод индуктивной связи сейчас применяется повсеместно в электронике.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Лига Скорость
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: