Основные агрегаты дизельного двигателя

Устройство топливной системы

История создания дизельного двигателя началась в XIX веке. Именно тогда инженер Рудольф Дизель создал агрегат с воспламенением от сжатия. Первый дизельный двигатель работал на обычном керосине.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Ученые использовали различные виды топлива, для получения лучших результатов. Мотор работал на пальмовом и рапсовом масле, на сырой нефти, позже стали использовать мазут и солярку.

ПОСМОТРЕТЬ ВИДЕО

Однако система вспрыска была несовершенна, что не позволяло применять дизельный ДВС на авто, которые работали на больших оборотах. Мощность первого дизельного двигателя была не очень высокой, но постепенно проблема была решена.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Первые машины с дизелем появились только в 20 гг. XX ст. Это были грузовики и общественный транспорт. Еще через 15 лет появились первые легковые, но они не были широко распространены. История дизельного двигателя начала меняться только с 70 –х гг. В это время как раз и появился компактный ДВС.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Состав и функции системы подачи топлива

  • транспортировка топлива, его фильтрация и создание давления в системе – выполняется механическими и гидравлическими устройствами;
  • расчет количества и момента впрыска топлива, а также распределение его по цилиндрам – осуществляется электронными устройствами.

ТНВД – для систем непосредственного впрыска (дизельных двигателей).

Топливные форсунки. Топливная система автомобиля

В состав топливной системы входят следующие элементы:

  • Бак – герметичная емкость для хранения топлива.
  • Трубопроводы (прямой и обратный) – трубки и гибкие шланги, по которым осуществляется транспортировка топлива.
  • Фильтры (грубой и тонкой очистки) – выполняют очистку от механических загрязнений.
  • Регулятор давления – необходим для обеспечения заданного уровня давления.
  • Насос – как правило, погружной, приводимый в движение электродвигателем.

Назначение и общее устройство топливной системы

Топливная система автомобиля (или система подачи топлива) — система, предназначенная для подачи топлива (бензина или дизельного топлива) из топливного бака в двигатель (точнее – в карбюратор или форсунки). Также эта система обеспечивает хранение топлива и его очистку перед подачей в двигатель.

Независимо от типа, любая топливная система содержит несколько основных компонентов:

– Топливный бак; – Система топливопроводов; – Топливный насос; – Топливный фильтр (или фильтры); – Устройство образования топливно-воздушной смеси или устройства впрыска топлива в цилиндры.

Топливный бак. Это резервуар для хранения топлива. Бак современных автомобилей — это довольно сложная система, которая содержит несколько компонентов: непосредственно резервуар, горловина для заливки топлива, датчик уровня топлива, топливный насос (однако во многих системах насос устанавливается в моторном отсеке) и другие. С баком также сообщается система улавливания паров топлива, которая содержит сепаратор, топливопроводы, адсорбер и несколько клапанов.

Топливопроводы. Это трубки, которые осуществляют подачу топлива от одних компонентов к другим. Подача топлива из бака осуществляется подающим топливопроводом, а возврат излишков топлива из карбюратора, форсунок или ТНВД (в дизельном двигателе) производится через сливные трубопроводы.

Топливный насос. Это устройство, которое подает топливо из бака к двигателю. В системах впрыска топлива насос создает высокое давление. В дизельных моторах два насоса — низкого и высокого давления (подкачивающий насос может быть и в инжекторных двигателях). Сегодня чаще всего применяются электрические насосы, однако в дизелях используются традиционные механические плунжерные ТНВД.

Топливные фильтры. Обычно их два — грубой и тонкой очистки. Фильтр грубой очистки — это просто несколько тонких металлических сеточек, установленных в топливном баке. Фильтр тонкой очистки устроен более сложно, он устанавливается перед карбюратором, рампой или ТНВД. Фильтры обеспечивают очистку топлива от разнообразных загрязнений, пыли и посторонних твердых частиц.

Устройство образования топливно-воздушной смеси — это карбюратор, в который подается бензин и воздух, где они смешиваются и через дроссельную заслонку подаются во впускной коллектор двигателя. В инжекторных и дизельных двигателях воздух подается отдельным дроссельным узлом, а образование горючей смеси происходит непосредственно в цилиндре.

Устройства впрыска топлива. Это форсунки в дизельных и инжекторных бензиновых двигателях. Однако в дизельных моторах (а также и в инжекторах с непосредственным впрыском) форсунки установлены непосредственно в головках цилиндров, а в инжекторных моторах — во впускных коллекторах.

Также в топливную систему современных автомобилей входит блок управления, который осуществляет управление подачей топлива, образованием топливно-воздушной смеси и изменением режимов работы двигателя в зависимости от нагрузки и других условий. Блок управления работает на основе показаний от многочисленных датчиков, установленных в различных узлах двигателя и других систем автомобиля.

На сегодняшний день существует два основных типа топливных систем — бензиновых и дизельных двигателей. О каждой из них нужно рассказать более подробно.

Проверка форсунок дизельного двигателя своими руками

Для определения неисправной необходимо на заведенном двигателе довести обороты коленвала до такой частоты, когда сбои в работе дизеля заметны наиболее отчетливо. Далее каждую из форсунок последовательно отключают путем ослабления накидной гайки в месте крепления магистралей высокого давления к соответствующим штуцерам насоса. Если отключается «рабочая» деталь, тогда работа двигателя меняется. В момент отключения топливной форсунки, которая заведомо неисправна, никаких явных изменений в работе двигателя не произойдет.

Забитый инжектор можно выявить путем прощупывания топливопровода на предмет толчков, которые возникают в результате пульсации нагнетаемого ТНВД горючего при полной невозможности или только частичной его прокачке через сопло

Следует обратить внимание на штуцер вызывающей подозрение секции. Температура элемента будет выше сравнительно с остальными

Помните, в процессе проверки  и регулировки дизельных форсунок необходимо соблюдать  повышенную осторожность! Струя топлива подается под большим давлением

При попадании такой струи на открытые участки кожи возможны глубокие и серьезные раны

Помните, в процессе проверки  и регулировки дизельных форсунок необходимо соблюдать  повышенную осторожность! Струя топлива подается под большим давлением. При попадании такой струи на открытые участки кожи возможны глубокие и серьезные раны. Одежда также не является эффективной защитой от струи топлива под высоким давлением!

Одежда также не является эффективной защитой от струи топлива под высоким давлением!

Экономичность дизеля и эффективность его работы сильно зависит от типа установленных распылителей, которые периодически меняют в процессе чистки, регулировки или ремонта топливной системы дизельного двигателя. Перед монтажом дизельной форсунки на мотор нужно убедиться в подходящей маркировке распылителя. Распылители на всех инжекторах должны быть одинаковыми, пропускная способность не должна отличаться.

Проверка форсунок на давление в момент впрыска, а также анализ эффективности распыла осуществляется при помощи специального прибора под названием максиметр. Максиметр является контрольным образцом в виде специальной форсунки. Такой  элемент имеет тарировочную пружину и шкалу, которая нанесена на корпус и колпак. При помощи указанной шкалы становится возможным установить давление начала впрыска солярки.

Вторым способом является наличие контрольной образцовой рабочей форсунки, с которой сравниваются остальные. Данные проверки производят на заведенном дизельном двигателе. Чтобы проверить качество распыла и давление впрыска потребуется демонтаж форсунки и топливопровода с дизельного ДВС. Далее на свободный штуцер топливного насоса высокого давления монтируется специальный тройник, к которому подключают тестируемую деталь параллельно с заведомо исправной контрольной.

Контрольный инжектор предварительно регулируют на оптимальный показатель давления начала топливного впрыска, проверяют на качество распыла. Также необходимо осуществить ослабление затяжки накидных гаек на оставшихся штуцерах ТНВД. Это позволит прервать топливоподачу к другим дизельным форсункам. Последним шагом становится активация декомпрессионного механизма, выставляется максимальная подача горючего. После этого можно начинать  вращение коленвала двигателя. 

Обе форсунки (контрольная и тестируемая) должны демонстрировать одновременное начало впрыска топлива. Если тестируемый инжектор отклоняется от нормы сравнительно с контрольным образцом, тогда потребуется регулировка дизельной форсунки.  Необходимо отрегулировать давление пружины тестируемой детали.

Для регулировки потребуется отвинтить колпак форсунки и ослабить контргайку. Далее при помощи регулировочного винта нужно установить такую степень затяжки пружины,  чтобы оба инжектора в итоге осуществляли впрыск одновременно. Для определения эффективности и качества распыла тестируемой детали необходимо сравнить результат с показателями контрольного образца.

Проверка дизельных форсунок на давление впрыска и качество распыла при помощи контрольного образца займет больше времени по сравнению с использованием заранее подготовленного максиметра. Кроме проверки на двигателе с использованием ТНВД эффективность работы инжектора можно протестировать при помощи специального проверочного (регулировочного) стенда.

Интеркуллер

Было замечено, что если при смесеобразовании используется холодный воздух, КПД двигателя увеличивается до 20%. Это открытие привело к появлению интеркуллера – дополнительного элемента турбин, повышающего эффективность работы.

После всасывания воздуха он проходит через радиатор, и в охлажденном состоянии попадает во впускной коллектор. Мы уже публиковали статью, в которой можно подробно ознакомиться со схемой работы интеркуллера.


За турбиной современного автомобиля необходимо должным образом ухаживать. Механизм крайне чувствителен к качеству моторного масла и перегреву. Поэтому смазочный материал рекомендуется менять не реже, чем через 5-7 тысяч километров пробега.

Кроме того, после остановки машины следует оставлять ДВС включенным на 1-2 минуты. Это позволяет турбине остыть (при резком прекращении циркуляции масла она перегревается). К сожалению, даже при грамотной эксплуатации ресурс компрессора редко превышает 150 тысяч километров.

Строение и принцип действия дизельного двигателя делают его незаменимым агрегатом на тяжелом транспорте, которому необходима хорошая тяга «на низах». Современные дизели с равным успехом работают и в легковых автомобилях, главное требование к которым: приемистость и время набора скорости.

Сложный уход за дизелем компенсируется долговечностью, экономичностью и надежностью в любых ситуациях.

Что еще стоит почитать


Система питания дизельного двигателя


Топливно воздушная смесь


Впускной коллектор с изменяемой геометрией


Принцип работы двигателя автомобиля


Принцип работы инжектора

Электронный тюнинг двигателя

Современные дизельные двигатели все чаще оснащаются электроникой. Датчики, которые следят за нагрузкой, контролируют количество подаваемого топлива и состав топливного заряда, подают сигналы на центральный блок управления, который подбирает наиболее эффективный и экономичный режим работы. При аккуратном влиянии на эту систему с помощью дополнительного оборудования можно повышать мощность мотора в определенных пределах – это называется чип-тюнинг. Сразу нужно отметить, что чип-тюнинг не всесилен, он может улучшить работу двигателя в пределах заложенного запаса прочности и частенько приводит к преждевременному износу систем.

Для повышения мощности дизельного двигателя могут использоваться специальные модули или блоки:
— блок, изменяющий импульсы управления форсунками;
— блок замещения режимов топливного насоса высокого давления (ТНВД);
— блок, изменяющий показания датчика давления топливного аккумулятора;
— модуль оптимизации режимов.

Первый вариант – наиболее известный среди любителей автотюнинга. Принцип работы такого блока заключается в том, что он блокирует кратковременные импульсы предварительного и последующего открытия иглы форсунки, что снижает расход топлива. Блок можно установить практически на любой модели, но его работа снижает ресурс мотора и сказывается на качестве сгорания топливного заряда.

Второй вариант можно использовать только на определенных моделях двигателей. Принцип действия этого блока заключается в том, что он подает сигнал с заниженными показателями давления в системе, что приводить к его повышению. В этом случае «страдает» ТНВД и форсунки, но мощность двигателя действительно увеличивается, а расход топлива уменьшается.

Третий вариант предусматривает подключение блока, который подает на ЭБУ сигнал о допустимо пониженном значении давления в топливном аккумуляторе. В результате давление автоматически повышается и по-новому определяется время и интенсивность впрыска топлива. При этом повышается мощность и экономится топливо, но снижается ресурс ТНВД и сажевого фильтра, на стенках цилиндра образуется нагар, двигатель начинает «дымиться».

Наиболее безопасным и эффективным является четвертый вариант. Модуль, подключаемый к системе питания, не подменяет нужными цифрами истинные значения рабочих параметров, а посылает сигнал на ЭБУ о необходимости изменения длительности впрыскивания топлива. В отличие от предыдущих блоков, данный модуль не приносит никакого вреда ни двигателю, ни ТНВД, так что ресурс систем и механизмов не уменьшится. Недостатком данного способа повышения мощности является его высокая стоимость, ограниченность в применении и сложность конструкции. Он не дает моментального эффекта – его действие можно почувствовать только через некоторое время.

Есть и другие способы, в том числе и использование оборудования, которое меняет истинное значение стехиометрических величин, но их применение может привести к серьезным проблемам с двигателем.

Одной из серьезных проблем, возникающих у дизельных двигателей — это так называемый «разнос двигателя». Это нештатный режим работы дизельного двигателя, при котором происходит неуправляемое повышение частоты вращения вала двигателя. Такой режим обычно наблюдается после запуска или при резком сбросе нагрузки. Основных причин разноса две: неисправность топливного насоса высокого давления и попадание большого количества моторного масла в камеру сгорания.

https://youtube.com/watch?v=_jSbOW5cGgE

Двигатель Тойота 1N-T


Тойота 1N-T

В том же 1986 году, через несколько месяцев после запуска мотора Тойота 1N, началось производство турбодизеля 1N-T. Поршневая группа изменений не претерпела. Даже степень сжатия оставили прежней — 22:1, что обусловлено невысокой производительностью установленного турбокомпрессора.

Мощность двигателя увеличилась до 67 л.с. при 4500 об/мин. Максимальный крутящий момент сместился в зону более низких оборотов и составил 130 Н.м при 2600 об/мин. Агрегат устанавливался на автомобили:

  • Toyota Tercel L30, L40, L50;
  • Toyota Corsa L30, L40, L50;
  • Toyota Corolla II L30, L40, L50.


Toyota Tercel L50

Четырехтактный цикл.


Принцип действия четырехтактного дизеля На первом такте работы двигателя происходит втягивание воздуха через открытый впускной клапан цилиндра. Поршень опускается.

На втором такте воздух нагревается при сильном (примерно в 17 раз) сжатии в цилиндре. Поршень поднимается.

Во время третьего такта поршень опускается, топливо впрыскивается в камеру сгорания через распылитель форсун. Топливо равномерно перемешивается с воздухом и образует самовоспламеняющуюся смесь. Энергия, образующаяся при сгорании топлива, приводит поршень в движение.

Четвертый такт – завершающий. Поршень поднимается, и выхлопные газы выходят через выпускной клапан.

Дополнительные компоненты двигателя

В конструкции дизельного двигателя присутствуют и другие детали. Например, турбина. Многие моторы оснащаются турбонаддувом для увеличения мощности. Обычные же атмосферники не имеют такого устройства.

Давайте рассмотрим, что такое турбонадув и из чего он состоит.

Принцип работы турбины

Большое количество воздуха подается в цилиндры через турбонаддув. Также увеличивается подача горючего во время рабочего цикла. Все это позволяет увеличить мощность мотора.

Так как давление насоса в дизельном двигателе выше и постоянное, то это помогает избежать турбоям, которые часто присутствуют на бензиновом моторе. Которыми также часто недовольны владельцы бензиновых турбодвигателей.

Принцип работы турбины таков:

  1. Отработанные газы проходят через компрессор.
  2. Они постепенно раскручивают колесо турбины.
  3. Затем вращение турбинного колеса передается компрессорному. Так происходит потому, что они оба установлены на одном валу.
  4. Под действием вращения турбокомпрессор сжимает воздух. Затем последний поступает в интеркулер.
  5. Здесь он начинает охлаждаться. Потом поступает снова в цилиндры силового агрегата.

Таким образом работает турбинное устройство. Дизельный двигатель запускается даже при отрицательных температурах внешней среды. Свечи накаливания разогревают воздушную смесь до 900 градусов. Именно поэтому сквозь турбины в цилиндры могут поступать холодные воздушные массы.

Турбонаддув он же турбонагнетатель состоит из

Турбонаддув дизельных двигателей состоит из следующих компонентов:

  • воздухозаборник;
  • компрессор;
  • клапан для регулировки отработанных газов;
  • заслонка для дросселя;
  • фильтрующее устройство;
  • интеркулер для охлаждения воздушных масс;
  • давления датчики;
  • коллектор впуска;
  • соединительные трубки.

В свою очередь в турбину входят элементы:

  • подшипники, которые создают вращение ее;
  • чехол на турбине;
  • чехол на компрессоре;
  • сталистая сетка.

Есть разные виды турбонаддувов и их особенности. Так, например, в турбине с изменяемой геометрией измененное сечение входного клапана регулирует поток отработанных газов. Два компрессора устанавливаются последовательно для того, чтобы за каждый режим работы отвечало одно из устройств, а не два за все или одно за все режимы работ.

Если же компрессоры в моторе установлены параллельно, то турбоямы становятся еле ощутимы. Механический и автоматический турбьонаддув, установленные вместе, способствуют увеличенную мощности. Например, первый включается при низких оборотах, а второй при высоких.

Цикл работы турбонаддува

Теперь вы знаете, что такое турбонаддув и как он работает. Давайте посмотрим, каков его цикл.

  1. Турбокомпрессор создает вакуум. Внутрь турбонаддува всасываются воздушные массы.
  2. Дальше в работу вступают роторы.
  3. Интеркулер охлаждает воздушные массы.
  4. Впускной коллектор пропускает через себя холодный воздух. Но перед тем, как он попадет в него, воздушные массы проходят очистку через воздушные фильтрующие устройства.
  5. Когда воздух будет набран до достаточного количества, клапан закроется.
  6. Уже отработанные воздушные массы проходят в турбину силового агрегата внутреннего сгорания и давят на ротор.
  7. Скорость вращения самой турбины и ее вала увеличивается до 1500 оборотов в секунду.

Таким образом за счет всех этих действий образовывается давление, которое и увеличивает мощность дизельного двигателя.

Интеркулер и форсунка

Интеркулер для двигателя на дизеле был создан, чтобы не подвергать каждодневному ремонту детали мотора. Детали двигателя при действии на них высоких температур подвергаются быстрому износу. Чтобы такого не происходило, были созданы интеркулера.

Топливо, подающееся через форсунки, правильно распределяется и в нужном количестве. Поэтому не происходит детонации при правильном расположении угла подачи.

Разновидности двигателей внутреннего сгорания двухтактного и четырехтактного типа

Большинство силовых установок на современных машинах относятся к четырехтактным. Двухтактные можно встретить намного реже. В двухтактниках – рабочий цикл (все 4 фазы – впуск, сжатие, рабочий ход и выпуск) приходится на всего два хода поршня между ВМТ и НМТ (верхней и нижней мертвой точкой), на один оборот коленвала. В четырехтактниках – движение происходит на каждый этап, 4 раза (вниз-вверх, вниз-вверх), 2 оборота «колена».

Схема работы 4‐х тактного двигателя

Двухтактный цикл позволяет сделать двигатель менее оборотистым и в 1,5 раза более мощным, чем такой же по объему четырехтактный, но ценой экономичности (от 15 до 30%) и большей токсичности выхлопа из-за необходимости добавлять масло непосредственно в горючее. В четырехтактном – сгорание смеси происходит более полно, исключая потери части топливной смеси, вылетающей в выпускной тракт, однако, большой процент выдаваемого крутящего момента уходит на компенсацию тепловых и мощностных потерь от вдвое большего количества ходов поршня (и необходимости тормозить-разгонять значимую массу в ЦПГ).

В итоге «экологичность» и экономичность, все же, «победили», и бензиновые двухтактники (к тому же, требовавшие более интенсивного теплоотвода) в массовом производстве силовых установок для легковушек и грузовиков уступили место четырехтактникам. А вот в танкостроении и авиации, где с потерями масла и экономичностью считаться не принято, наоборот – двигатель 2Т типа «прижился» хорошо.

Все знают, что двух и четырехтактными бывают бензиновые моторы, а четырехтактными – дизели, но не все знают, что на самом деле двухтактный дизель тоже существует. Разработанный больше 120 лет назад, он спроектирован по схеме встречного движения двух поршней в одном цилиндре. Их верхушки в ВМТ создают одну общую камеру сгорания, воспламенение смеси – тоже «одно на двоих». Двигаясь в противоположных направлениях, поршни толкают каждый свой коленвал, тем самым компенсируя вибрации друг друга. Интересно, что подобная схема допускает создание как дизельного, так и бензинового мотора: бензиновый вариант такого «оппозита» раньше устанавливался на немецкие самолеты Юнкерс, а сегодня – усовершенствованный вариант двухтактного дизеля применяется в тепловозах серий ТЭ3 и ТЭ10, в танках (движки 5ТДФ и 6ТД), на малых судах.

2‐х тактный 4‐х цилиндровый двигатель ЯАЗ−204

Солидаризм

Примерно в то же время Дизель начал заниматься социальными теориями, создал труд «Солидаризм. Естественное экономическое освобождение людей». В нем объясняется возможность возникновения общества, в котором большинство членов будут иметь свой собственный малый бизнес. Такое общество избежит революций, мятежей, беспорядков, жертв и обречено на процветание, думал Дизель.

Рудольф ДизельФото: wikipedia.org

Эта теория не нашла большой поддержки в бурные годы перед Первой мировой войной и грядущей революцией. На пропаганду своей теории Дизель растратил большую часть денег, полученных в результате изобретения дизельного двигателя.

Плюсы и минусы дизельного мотора

Дизельные двигатели славятся мощностью и надежностью, но и не только этим. Давайте посмотрим, какие новые системы дали двигателям вторую жизнь. Например, одним из компонентов, разработанных для современных движков, стала система Common Rail.

Питание Common Rail ставится на аппараты на дизеле с девяносто седьмого года прошлого столетия. По сути, она является усовершенствованным способом поступления топлива в камеру сгорания, повышает давление. Изготовление, которого не зависит от скорости вращения силового агрегата или давления.

Ключевым различием Common Rail от обычного ТНВД является то, что последний нужен просто для увеличения давления в топливной магистрали. Насос не дозирует цикловую подачу дизеля и не регулирует поступление его.

На низких оборотах такой аппарат работает без задымления при большей цикловой подаче автодизеля. У него – высокий вращающий момент происходит и при низких оборотах. Такая функция делает машину «отзывчивой» в движении.

Поэтому в РФ на две тысячи седьмой почти все моторы грузовиков были переделаны на дизельные аппараты. Теперь производительность и эффективность их повысилась в несколько раз если приравнивать к тому, что было до этого.

В использованных газах аппарата на дизеле находится малое количество оксида углерода.  Также силовой агрегат на дизеле экономичен, если приравнивать его к бензиновому, на тридцать, а то и пятьдесят процентов. Так происходит потому, что в моторе на дизеле степень сжатия воздуха доводится до больших чисел, если сравнивать со степенью сжатия топливной смеси в силовых агрегатов на бензине.

Единственным минусом дизельных моторов с турбонаддувом является сам турбокомпрессор. Так как срок деятельности турбины всего 75 000 километров, то автовладельцам приходится заменять ее, устанавливая новую. Поэтому многие водители не хотят таких растрат и мучений, покупают обычные атмосферные движки на дизеле.

Хотя среди молодого поколения все больше становится поклонников турбодизелей. Некоторые даже увеличивают мощность в турбине, тюнингуют старые атмосферные движки. Поэтому дизельные моторы стали все больше пользоваться популярностью, чем бензиновые.

Турбояма

В процессе работы турбина может совершать до 200 тысяч оборотов в минуту. Раскрутить ее до необходимой скорости вращения моментально невозможно. Это приводит к появлению т.н. турбоямы, когда с момента нажатия на педаль газа до начала интенсивного разгона проходит некоторое время (1-2 секунды).

Проблема решается доработкой турбинного механизма и установкой нескольких крыльчаток разного размера. При этом маленькие крыльчатки раскручиваются моментально, после чего их догоняют элементы большого размера. Такой подход позволяет практически полностью ликвидировать турбояму.


Также производятся турбины с изменяемой геометрией, VNT (Variable Nozzle Turbine), призванные решать те же проблемы. В настоящий момент существует большое количество модификаций подобного типа турбин. Коррекция геометрии успешно справляется и с обратной ситуацией, когда оборотов и воздуха становится слишком много и необходимо притормозить обороты крыльчатки.

Бензиновый двигатель

Пожалуй, основным недостатком бензинового двигателя является большой расход топлива. Второй недостаток вытекает из первого — это стоимость. Цена бензина выше чем дизельного топлива. Поездки на дальние расстояния вряд ли можно считать оптимальными с точки зрения затрат. Ко всему прочему, гармоничная работа мотора требует использования моторных масел, что влечет за собой покупку необходимого товара, а также услуги по замене и прочие расходы на автосервисы.

Не смотря на вышеперечисленное — бензиновый двигатель отличается относительно низкой стоимостью и значительно меньшей массой. У бензинового мотора технология изготовления проще из-за низкого сжатия топлива, относительно низкого внутреннего давления, но при этом риск воспламенения при аварийных ситуациях выше, в силу высокой летучести топлива

Немаловажно отметить, что ремонт бензинового двигателя проще, с ним могут справиться опытные водители. Низкая шумность бензинового мотора

Если забился или выгорел катализатор, то в крайнем случае его можно удалить.

Если в автомобиле с дизельным мотором удалить сажевый фильтр, то вас будет окутывать и преследовать облако копоти. Здоровье катализаторов зависит также от целостности гофры глушителя. Гофры глушителя необходимо периодически проверять на предмет прогорания, признаки прогоревшей гофры — громкий звук, копоть в прогоревших местах, запах выхлопных газов в салоне автомобиля.

История.

В 1890 году Рудольф Дизель предположил, что если увеличить давление в цилиндрах, то эффективность работы двигателя заметно увеличится (теория «экономичного термического двигателя»). Свои замыслы ему удалось реализовать после получения патента на свое изобретение 23 февраля 1893 года. Первая рабочая модель двигателя была собрана только в начале 1897 года, а 28 января она успешно прошла все тестирования и испытания.


Патент на изобретение Дизеля Патент, который получил Рудольф Дизель 23 февраля 1893 года на свое изобретение.

В качестве топлива Рудольф Дизель предполагал использовать каменноугольную пыль, однако проведенные опыты показали, что она совершенно не подходит на эту роль из-за высоких абразивных свойств. Зола, полученная при сгорании пыли, изнашивает двигатель и выводит его из рабочего состояния. Помимо того, неосуществимой оказалась подача пыли в цилиндры двигателя. Однако, несмотря на эти неудачи, стало возможным использование тяжелых фракций нефти в качестве топлива. Хотя Рудольф Дизель первым запатентовал использование в качестве системы зажигания сжатие воздуха, однако и до него существовали люди, высказывавшие подобные идеи. Таким был и Экройд Стюард, но по непонятным причинам он не смог получить патент.

Идея Экройда Стюарда заключалась в использовании сжатого воздуха для поджигания, впрыскиваемого в емкость, топлива. Чтобы запустить двигатель, необходимо было нагреть емкость лампой, но после запуска, работа двигателя поддерживалась без дальнейшего подвода тепла. Главное упущение теории Стюарта в том, что он даже не учитывал преимущества работы от высокой степени сжатия. Перед собой он ставил задачу исключения из двигателя свечей зажигания. Вот почему в нынешнее время всем хорошо известны «дизельные двигатели

«, «дизельное топливо», «двигатель Дизеля» и просто «дизель», а про Экройда Стюарда почти никто не знает.

Первые дизельные двигатели

были крупногабаритными и тяжелыми, поэтому на протяжении почти 30 лет применялись исключительно в стационарных механизмах и силовых установках морских судов. Дорога в автомобилестроение была им закрыта также из-за того, что системы впрыска топлива того времени не были приспособлены к работе на высокооборотистых двигателях.


Стационарный одноцилиндровый дизельный двигатель На фотографии один из первых дизельных двигателей. Он представлял собой громоздкую стационарную конструкцию с одним цилиндром.

В 20-е годы ХХ века немецким инженером Робертом Бошем был усовершенствован встроенный топливный насос высокого давления, который широко применяется и сегодня. Использование гидравлической системы в качестве нагнетателя и впрыскивателя топлива позволило избавиться от отдельного воздушного компрессора, а также увеличить крутящий момент двигателя. Но даже после этого дешевые и легкие двигатели с электрическим зажиганием лидировали среди легковых автомобилей, в то время как дизельные двигатели

устанавливались только на общественный транспорт и грузовые машины.

PSA-Ford DV4 / DLD-414, DV6 / DLD-416 (1.4 HDi / TDCi, 1.6 HDi / TDCi)

В конце 1990-х и в начале 2000-х годов Groupe PSA (Peugeot Société Anonyme) совместно с Ford разработали два очень надёжных малолитражных дизельных двигателя, 1,4-литровый и 1,6-литровый, которые у французов обозначались как DV4 и DV6, а у американцев DLD-414 и DLD-416 соответственно. DV4 / DLD-414 производились до 2015 года, а DV6 / DLD-416 до 2018 года. Кроме того, что эти двигатели достаточно надёжны и их ресурс в среднем составляет около 400 000 километров пробега, они ещё и очень дешёвые как в обслуживании, так и в ремонте.

Оснащались автомобили: Citroen C1, Citroen C2, Citroen C3, Citroen C4, Citroen C5, Citroen DS3, Citroen Xsara, Citroen Xsara Picasso, Citroen Picasso, Citroen C4 Picasso, Citroen Berlingo, Peugeot 107, Peugeot 1007, Peugeot 206, Peugeot 207, Peugeot 208, Peugeot 307, Peugeot 308, Peugeot 3008, Peugeot 407, Peugeot 508, Ford Fiesta, Ford Fusion, Ford Focus, Ford C-Max, Mazda 2, Mazda 3, Mazda 5, Suzuki SX-4, Suzuki Liana, Toyota Aygo, Mini Cooper D, Volvo C30, Volvo S40, Volvo V40, Volvo V50, Volvo S60, Volvo V60, Volvo V70, Volvo S80.

Peugeot DW10

Старожил нашего топ-10 был выпущен концерном PSA в далёком 1998 году. Вплоть до 2003 года это были восьмиклапанные силовые агрегаты, но затем было принято решение перейти на более прогрессивную шестнадцатиклапанную технологию.

Тем не менее именно восьмиклапанные модели считаются наиболее безотказными и надёжными. Самая частая поломка связана с топливной системой от компании Siemens, которая случается очень редко, в результате неквалифицированной замены неисправного топливного фильтра. Впрочем, и 16-клапанные модификации доказали, что они практически не уступают старым версиям по надёжности. Замечания бывают только в отношении цепи ГРМ, той же сименсовской топливной системы. И общая проблема всех дизельных моторов – боязнь солярки плохого качества. Других часто встречающихся проблем с Peugeot DW10 не возникает, поэтому этот дизель популярен в России.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Лига Скорость
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: