Виды впрысковых систем
Несмотря на достаточно простое описание работы инжекторного мотора, приведенное ранее, существует несколько разновидностей, осуществляющий подобный принцип работы.
Одноточечный впрыск
Это самый простой вариант реализации принципа впрыска. Он практически совместим с любым карбюраторным двигателем, разница заключается в применении впрыска вместо карбюратора. Если карбюратор во впускной коллектор подает ТВС, то при одноточечном впрыске во впускной коллектор впрыскивается через форсунку бензин.
Как и в случае с карбюраторным мотором, при такте впуск двигатель всасывает готовую топливно-воздушную смесь, и его работа практически не отличается от работы обычного двигателя. Преимуществом такого мотора будет лучшая экономичность.
Многоточечный впрыск
Представляет дальнейший этап совершенствования инжекторных моторов. Топливо по сигналам от контроллера подается к каждому цилиндру, но тоже во впускной коллектор, т.е. ТВС готовится вне цилиндра и уже в готовом виде поступает в цилиндр. В таком варианте реализации принципа инжекторного двигателя возможно обеспечить многие из преимуществ, присущие впрысковому двигателю и отмеченные ранее.
Непосредственный впрыск
Является следующим этапом развития инжекторных двигателей. Впрыск топлива выполняется прямо в камеру сгорания, чем обеспечивается наилучшая эффективность работы ДВС. Итогом такого подхода является получение максимальной мощности, минимального расхода топлива и наилучших показателей экологической безопасности.
Инжекторный ДВС является следующим этапом в развитии бензинового мотора, значительно улучшающий его показатели. В моторах, использующих систему впрыска топлива, возрастает мощность, а также экономическая эффективность их работы, они отличаются значительно меньшим отрицательным влиянием на окружающую среду.
Датчики инжекторного двигателя
Все элементы можно поделить на исполнительные и датчики. Для начала мы рассмотрим датчики.
Датчик массового расхода воздуха (ДМРВ)
Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.
Датчик абсолютного давлении и температуры двигателя (ДАД)
Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.
Датчик положения коленчатого вала (ДПКВ)
Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.
Датчик фаз (ДФ)
Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.
Датчик детонации
Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.
Датчик положения дроссельной заслонки (ДПДЗ)
По сути своей, это обычный потенциометр. Опорное напряжение на нем, как правило, составляет 5 вольт. Так вот, в зависимости от того, на какой угол отклоняется дроссельная заслонка, меняется напряжение на контрольном выводе. Все просто.
Датчик температуры охлаждающей жидкости (ДТОЖ)
Этот датчик нужен для определения температуры двигателя. Если на карбюраторном двигателе он нужен просто для включения и выключения электровентилятора, то здесь он представляет собой более сложное устройство. Это термосопротивление, величина которого меняется в зависимости от температуры. Соответственно, меняется и напряжение, при прохождении через него.
Датчик кислорода
Он устанавливается в выхлопной системе, существуют системы с двумя датчиками. Его задача – отслеживать количество свободного кислорода в выхлопных газах. Например, если его слишком много, то это значит, что смесь вся не сгорает, а значит, надо обогатить. Если же кислорода меньше, чем значится в нормативных таблицах ЭБУ, то ее надо обеднить.
Устройство и принцип работы
Чтобы разобраться детальнее в принципе работы инжектора, нужно посмотреть на его основные компоненты. Любая инжекторная система состоит из нескольких базовых элементов. А именно из:
- топливных форсунок;
- топливной рампы;
- насоса;
- датчиков;
- ЭБУ.
Каждый компонент играет свою ключевую роль в том, как работает инжектор с установленными внутри него топливными подающими форсунками.
- Форсунки. Являются основным, главным элементом всей подающей системы. Именно форсунки стали причиной для названия инжектора, поскольку они предназначены для распыления и подачи через специальные впускные коллекторы или напрямую в камеру сгорания топлива. Форсунка состоит из корпуса, внутри которого размещается клапан. Этот клапан обязательно электромагнитного типа. Он открывает и закрывает распылитель (форсунку). Сам процесс распыления осуществляется за счёт наличия отверстия кольцевой формы, предусмотренного между иглой и стенками корпуса. Игла управляется клапаном.
- Рампа. Важный элемент для современных автомобильных инжекторных систем, которые функционируют по принципу распределённого впрыска. С помощью рампы топливо подаётся на все установленные форсунки, и объединяет их в общую систему.
- Насос. Поскольку топливо в случае с инжекторами подаётся под определённым давлением, для его создания нужен электронасос.
- ЭБУ. Блок управления полностью отвечает за контроль и процесс подачи формируемой топливовоздушной смеси. Внешне напоминает небольшой блок, соединённый с разными датчиками, форсунками, топливным насосом, а также системой зажигания и прочими элементами. ЭБУ собирает информацию с разных контроллеров и датчиков, что позволяет ему правильно определять пропорции горючего и воздуха, в нужный момент выполнять впрыск и т. д.
- Датчики. С помощью датчиков фиксируются различные показатели в условиях реального времени. Причём каждый автопроизводитель определяет перечень датчиков, к которым подключается ЭБУ. Чем больше информации передают контроллеры на блок управления, тем эффективнее работает вся система.
Все эти компоненты тесно связаны друг с другом и постоянно взаимодействуют. Именно на этом взаимодействии базируется принцип работы самого инжекторного двигателя.
Выглядит это примерно следующим образом:
- включается зажигание;
- питание идёт на насос, расположенный в топливном баке;
- насос передаёт топливо по магистрали под давлением;
- форсунки располагаются на рейке;
- через рейку топливо поступает к форсунке;
- дополнительно на рейке (рампе) находятся регуляторы давления;
- датчики передают на ЭБУ необходимую для анализа информацию;
- блок синхронизирует впрыск, подавая на форсунки специальные управляющие импульсы;
- импульсы вынуждают рабочие форсунки открываться в заданный момент времени.
Если говорить простым языком, то горючее распыляется с помощью рабочих форсунок в самом коллекторе, там смешивается с кислородом (воздухом) и подаётся в камеру сгорания через клапаны.
Неоспоримым преимуществом современной инжекторной топливоподающей системы является способность автоматически за доли секунды менять режим работы двигателя, опираясь на текущие условия.
Такая высокая точность в работе системы стала возможной за счёт использования электроники, объединённой в блок управления всем автомобильным двигателем.
Каждый датчик непрерывно передаёт информацию в ЭБУ, который её анализирует и корректирует работу системы по мере необходимости. Это позволяет добиться необходимой мощности, производительности, экономичности и экологичности.
Все основные датчики в двигателе автомобиля, и за что они отвечают (список)
С появлением инжекторной системы подачи топлива количество датчиков в конструкции автомобиля значительно увеличилось. Электронный блок управления двигателем получает и обрабатывает большое количество информации, что необходимо для правильной работы всех систем. Но далеко не все водители знают о том, какие датчики имеются в конструкции автомобиля, и для чего они предназначены. Я решил рассказать о всех основных элементах, что позволит автолюбителям самостоятельно диагностировать неисправность.
Перейдем к списку датчиков:
Датчик массового расхода воздуха (ДМРВ)
— располагается за воздушным фильтром и определяет количество проходящего воздуха. Необходим для формирования оптимальной топливно-воздушной смеси. Данные с ДМРВ передаются в ЭБУ, который корректирует подачу топлива в соответствии с ними.
Датчик положения дроссельной заслонки (ДПДЗ)
— считывает информацию о том, в каком положении находится дроссельная заслонка. Положение заслонки зависит от уровня нажатия на педаль газа. Данные с датчика позволяет корректировать объем подачи топлива.
Датчик положения коленчатого вала (ДПКВ)
— считывает положение и обороты коленвала двигателя. Пожалуй, этот датчик можно назвать единственным, выход из строя которогоприведет к полной невозможности запуска двигателя . Показания с ДПКВ позволяют ЭБУ определять момент для впрыска топлива и угол опережения зажигания. Также информация с датчика отображается на тахометре.
Датчик положения распределительного вала (ДПРВ)
— находится в районе распредвала и позволяет определить положение цилиндров в верхней точке. Данные с ДПРВ позволяют определить, в какой цилиндр нужно подать топливо и включить зажигание.
Датчик детонации
— датчик, определяющий детонацию в камере сгорания. Детонация влечет за собой серьезную нагрузку на двигатель и способна разрушать его изнутри. Датчик улавливает чрезмерные колебания, при возникновении которых корректируются топливная смесь и угол опережения зажигания.
Датчик температуры охлаждающей жидкости (ДТОЖ)
— определяет температуру ОЖ в системе. Данные с ДТОЖ позволяют быстрее прогревать холодный двигатель за счет увеличенных оборотов холостого хода, а при достижении установленной температуры ЭБУ включает принудительное охлаждение вентилятором во избежание перегрева.
Датчик кислорода
— располагается в выпускной системе. На современных автомобилях имеются два или более датчиков. Их применение связано с экологическими стандартами. Первый датчик кислорода находится перед катализатором, второй за ним. В зависимости от показаний позволяет корректировать топливную смесь и определять неисправность катализатора.
Датчик скорости
— обычно располагается рядом с КПП или колесом. Определяет количество вращений вала, за счет чего ЭБУ отображает текущую скорость на приборной панели. Сейчас его функцию могут заменять другие датчики, например, датчик АБС.
— расположен в масляной системе и определяет давление. Никакие параметры на его основе не корректируются, но при возникновении слишком низкого давления на приборной панели загорится лампочка «маслёнки».
Датчик абсолютного давления (ДАД)
— считывает показатели давления во впускном коллекторе, за счет чего корректируется состав топливно-воздушной смеси.
Датчик положения кузова (датчик неровной дороги)
— располагается на кузове автомобиля и позволяет определить движение по неровной дороге. Так как подобный режим движения может повлечь за собой пропуски зажигания на приборной панели должна загореться характерная ошибка. Но ЭБУ понимает, что автомобиль едет по неровностям, поэтому не отображает ошибку.
Источник
Устройство карбюратора
Карбюратор – представляет собой простейший вид устройства для подачи и распыления бензина. Процесс смешивания топлива с воздухом выполняется механически, а регулировка подачи смеси требует тщательной настройки. Карбюраторная система благодаря использованию простых механизмов легка в обслуживании. Опытный автомобилист может выполнить подобный ремонт самостоятельно, что даёт определённые преимущества в эксплуатации. Для таких операций нетрудно приобрести ремкомплект, а все работы проводятся штатным инструментом, имеющимся в машине.
Находится карбюратор на впускном коллекторе, а его конструкция состоит из поплавковой и смесительной камер. Для подачи топлива служит трубка распылителя, соединяющая камеры между собой. В поплавковую камеру с помощью бензонасоса подаётся топливо, а стабильную подачу бензина обеспечивает игольчатый фильтр и поплавок. Смесительная камера называется ещё воздушной и состоит из диффузора, распылителя и дроссельной заслонки. При движении поршней создаётся разрежение, обеспечивающее всасывание атмосферного воздуха и бензина. Такое смешение и обеспечивает стабильную работу двигателя.
Форсунка
Топливная форсунка (инжектор) – это клапан с электронным управлением. Подачу топлива к этому клапану обеспечивает топливный насос. Форсунка может открываться/закрываться много раз в секунду.
Когда форсунка находится под напряжением, электромагнит перемещает поршень, открывающий клапан, в результате чего происходит впрыск топлива под давлением через крошечное сопло. Насадка предназначена для распыления топлива. Появляется мелкий туман, который легко сгорает.
Форсунки установлены во впускном коллекторе таким образом, чтобы распылять топливо прямо на впускные клапана. Трубка, которая поставляет топливо к каждой из форсунок под определенным давлением, называется топливной рампой.
Для того чтобы определить оптимальное количество топлива, блок управления двигателя получает сигналы от множества датчиков. Рассмотрим самые важные из них.
Что такое форсунки в автомобиле
В широком смысле форсунка – это нагнетательный насос, который используется для распыления различных жидкостей (а иногда и порошков) под высоким давлением. В автомобильных двигателях эти устройства выполняют ту же самую функцию. Основная область их применения – распыление топливной смеси в инжекторных бензиновых и дизельных двигателях внутреннего сгорания.
https://youtube.com/watch?v=sF2BjldN0qI
Первая механическая форсунка была сконструирована в 1864 году российским ученым Александром Шпаковым, а затем усовершенствована другим отечественным инженером, Владимиром Шуховым. В двигателях внутреннего сгорания устройство впервые применил Рудольф Дизель. С появлением инжекторных моторов оно стало нужно и на бензиновых силовых агрегатах.
Режимы работы
Инжекторный двигатель способен работать в 2 режимах.
- Холодного пуска. Во время запуска топливо оседает на стенках впускных труб и значительно меньше испаряется. Вследствие этого, топливная смесь незначительно утрачивает свои способности. Для устранения негативного эффекта необходима дополнительная подача топлива при запуске, до достижения топливом необходимой температуры, благодаря чему достигаются нужные обороты холостого хода.
- Частичной или полной нагрузки. Максимальной мощности двигатель достигает в момент полного открытия дроссельной заслонки. При повышении оборотов (при быстром открытии заслонки) способность топлива к испарению снижается. Во избежание этого и достижения нужных оборотов происходит дополнительная подача топлива.
Системы питания дизельных двигателей
И дизельные системы модернизируются. Если раннее она была механической, то сейчас и дизеля оснащаются электронным управлением. В ней используются те же датчики и блок управления, что и в бензиновом моторе.
Сейчас на автомобилях применяется три типа дизельных впрысков:
- С распределительным ТНВД.
- Common Rail.
- Насос-форсунки.
Как и в бензиновых моторах, конструкция дизельного впрыска состоит из исполнительной и управляющей частей.
Многие элементы исполнительной части те же, что и у инжекторов – бак, топливопроводы, фильтрующие элементы. Но есть и узлы, которые не встречаются на бензиновых моторах – топливоподкачивающий насос, ТНВД, магистрали для транспортировки топлива под высоким давлением.
В механических системах дизелей применялись рядные ТНВД, у которых давление топлива для каждой форсунки создавала своя отдельная плунжерная пара. Такие насосы отличались высокой надежностью, но были громоздкими. Момент впрыска и количество впрыскиваемого дизтоплива регулировалось насосом.
В двигателях, оснащаемых распределительным ТНВД, в конструкции насоса используется только одна плунжерная пара, которая качает топливо для форсунок. Этот узел отличается компактными размерами, но ресурс его ниже, чем рядных. Применяется такая система только на легковом автотранспорте.
Common Rail считается одной из самых эффективных дизельных систем впрыска двигателя. Общая концепция ее во многом позаимствована у инжектора с раздельной подачей.
В таком дизеле моментом начала подачи и количеством топлива «заведует» электронная составляющая. Задача насоса высокого давления — только нагнетание дизтоплива и создание высокого давления. Причем дизтопливо подается не сразу на форсунки, а в рампу, соединяющую форсунки.
Насос-форсунки – еще один тип дизельного впрыска. В этой конструкции ТНВД отсутствует, а плунжерные пары, создающие давление дизтоплива, входят в устройство форсунок. Такое конструктивное решение позволяет создавать самые высокие значения давления топлива среди существующих разновидностей впрыска на дизельных агрегатах.
Напоследок отметим, что здесь приводится информация по видам впрыска двигателей обобщенно. Чтобы разобраться с конструкцией и особенностями указанных типов, их рассматривают по отдельности.
Устройство инжекторного двигателя – основные датчики
Для выбора оптимального количества топлива в различных условиях эксплуатации ЭБУ двигателя следит за показаниями различных датчиков. Вот лишь несколько основных:
Существует два основных типа управления многоточечными системами впрыска: топливные форсунки могут открываться одновременно или каждая из них может открываться только перед открытием впускного клапана соответствующего цилиндра (это называется последовательный многоточечный впрыск топлива).
Преимущество последовательного впрыска топлива заключается в том, что система может реагировать на любые действия водителя быстрее, поскольку с момента выполнения действия она ждет лишь очередного открытия впускного клапана. Системе не нужно ждать полного вращения двигателя. Разобраться в работе инжектора мы смогли, но кто всем этим «руководит»?
Инжектор или карбюратор?
Пришло время разобраться, чем отличается инжектор от карбюратора. Прежде всего, механизм поступления горючего в камеру принципиально другой. Конструктивные метаморфозы связаны преимущественно с системами поступления топлива и питания.
Смешение бензина с конкретной частью воздуха происходит в карбюраторе. Далее цилиндры всасывают образовавшуюся смесь топлива. Инжекторный движок оснащен соответствующими форсунками, отвечающими за впрыскивание горючего под воздействием силы давления в конкретных дозах. Далее уже в порцию горючего поступает воздушная масса и происходит смешивание субстанций. Если проанализировать принцип работы, становится ясно, что разница между инжектором и карбюратором заключается в эффективности.
Инжекторные моторы мощнее в среднем на 15%.
Еще одно отличие – возможность основательно экономить топливо при разных эксплуатационных режимах. Пришло время вывести отличия между инжектором и карбюратором в список недостатков и преимуществ:
- Инжектор более прост в эксплуатации, но его ремонт более дорогой и трудоемкий.
- Карбюратор требует систематичного и регулярного обслуживания, коксуется в большей степени, могут возникать проблемы с запуском в период морозов. Летом работу движка тоже с натяжкой можно назвать стабильной, наблюдается избыточный расход топлива.
- Ресурс карбюратора меньше, поэтому для продления срока эксплуатации его необходимо на регулярной основе подстраивать, промывать и чистить.
- Достоинство карбюратора – отсутствие негативной реакции на низкопробное горючее, гараж автовладельца открыт для экспериментов.
- Ключевые преимущества инжекторных движков – экономное расходование горючего, стабильная функциональность, отсутствие сложностей во время запуска силового агрегата. Наблюдается более высокая отзывчивость движка на активацию газа, бензин реже заливает свечи зажигания, двигатель в меньшей степени подвержен коксованию. Недостаток можно найти в проблематичности определения поломки при наличии таковой.
Принцип работы
- В силовом агрегате топливная смесь подготавливается вне камеры сгорания при помощи специального устройства. В результате движения поршня вниз определенное количество топлива всасывается в камеру сгорания.
- Далее идет основной процесс, так называемый рабочий ход. В это время происходит сжимание топлива и поджигание при помощи искры.
- В итоге все топливо сгорает и выделяется огромное количество тепла, которое идет на мощность инжекторного двигателя.
- В конце такта поршень движется вверх и открывается выпускной клапан, который и выводит отработавшие газы. Далее приоткрывается впускной клапан, и новая порция топлива поступает в цилиндр.
Данный процесс происходит в течение долгого времени, пока двигатель работает. Специалисты называют такой газообмен четырехтактным. То есть все это происходит за четыре такта:
- Впуск;
- Сжатие;
- Сгорание;
- Выпуск.
Чтобы совершить один такой цикл требуется два оборота коленвала. Чтобы потери мощности были минимальны, конструкторы придумали многоцилиндровые системы. Они позволяют выдавать огромное количество тепла и мощности.
В современном мире большую популярность получил четырехтактный инжекторный двигатель, что неудивительно. Дело в том, что он отличается не только техническими характеристиками, но и самими габаритами. В основе данной системы лежит порядок работы цилиндров.
Выбор оптимальной системы подачи топлива
Размышляя какая разница между инжектором и карбюратором, многие автомобилисты приходят к выводу что электронная система гораздо надёжнее. Однако переоборудование любого автомобиля экономически невыгодно и приведёт только к излишним затратам. Решение о выборе более экономичной системы актуально при покупке машины. Разобраться чем отличаются инжектор и карбюратор довольно просто, и такие знания обязательно пригодятся.
Карбюратор уже отслужил свой срок на рынке современных автомобилей. Несмотря на его преимущества, применение инжектора наиболее эффективно и отвечает всем экологическим требованиям. Карбюраторные двигатели используются в основном на старых машинах, но такая технология отлично себя зарекомендовала и не нуждается в доработке. Применение инжектора имеет немалые преимущества и эта система установлена без возможности выбора в любой новой машине.
Как работает инжектор
Итак, как известно, в современных авто карбюраторная система уже полностью замещена инжекторными двигателями. Последние, в отличие от карбюраторных, повышают мощность автомобиля, улучшают динамику его разгона, экологичность. При том, что расход топлива при этом уменьшается.
Кстати, высокие экологические показатели инжектор сохраняет без различных регулировок и настроек. Ведь там имеет место самонастройка топливовоздушной смеси, которая стала возможна благодаря кислородному датчику, установленному на выпускном коллекторе (лямбда-зонд).
Устройство инжектора.
Подача топлива в инжекторный движок производится форсунками, которые могут располагаться или на впускном коллекторе (моновпрыск), или недалеко от впускных клапанов цилиндров (распределенный впрыск), или непосредственно в ГБЦ — головке блока цилиндров (прямой впрыск — впрыск топлива осуществляется в саму камеру сгорания), о том, как промыть форсунок своими руками смотрим вот здесь.
Помимо форсунок инжектор включает в себя следующие исполнительные элементы:
- ЭБУ (контроллер) — обрабатывает данные от датчиков и управляет системами подачи топлива и зажигания;
- бензонасос (электрический) — он подает топливо;
- различные датчики: температуры, коленвала, распредвала, детонации;
- регулятор давления — поддерживает разницу давления воздуха во впускном коллекторе и форсунках.
Также все инжекторные моторы оснащаются каталитическим нейтрализатором (катализатором) в виде «сот», на котором нанесен активный слой, способствующий догоранию топлива, остающемуся в выхлопных газах. Однако заправка этилированным бензином длительное время приводит к определенным поломкам, из-за которых катализатор теряет такую способность.
Датчик кислорода в инжекторе и его работа.
Наиболее известным типом является циркониевый кислородный датчик, подробнее в статье — что такое датчик кислорода. Он есть переключатель (к слову, один из самых важных), который резко изменяет свое состояние на отметке 0.5% кислорода, содержащегося в выхлопных газах.
Устройство интерфейса датчика выглядит следующим образом: прогретый датчик (300 градусов Цельсия и выше) при богатой смеси (содержание кислорода 0.5%) — от 0.2 до 0.45 Вольт
И не важно, какой точно при этом уровень напряжения, учитывается лишь то, где он расположен по отношению к средней линии. То есть топливо добавляется, когда ECU определяет сигнал бедной смеси, и уменьшается, когда богатой. Следовательно, подача топлива регулируется в зависимости от практических результатов сгорания, что дает возможность системе приспособиться к разным условиям работы
Следовательно, подача топлива регулируется в зависимости от практических результатов сгорания, что дает возможность системе приспособиться к разным условиям работы.
Известно, что надежно данный датчик работает только в хорошо прогретом состоянии, следовательно, ECU система TCCS заметит его показания только в случае прогрева двигателя до нужного уровня. Однако не всех это устраивает. Поэтому для придания скорости этому процессу в датчик кислорода часто монтируют электрический подогреватель.
Принцип работы механического инжектора.
Хотя ранее использовались иные конструкции инжекторных моторов с впрыском. К примеру, известен такой двигатель, в котором управление происходит при помощи механических устройств. Управление здесь — дозировка объема топлива при помощи специального клапана. Клапан же управляется системой рычагов, которую приводит в действие воздушный поток. Сегодня механически управляемые клапаны уже полностью изжили себя.
В настоящее же время в каждой системе впрыска есть встроенная подсистема самодиагностики, которая позволяет установить неисправности узлов, датчиков и исполнительных механизмов системы. После самодиагностики компьютер вырабатывает диагностические коды. Они извлекаются из памяти компьютера и расшифровываются согласно таблицам. У каждого производителя свой вариант извлечения данных кодов. Найти практически всех их можно в свободном доступе в интернете, подробнее о диагностике инжектора своими руками, можно прочитать тут. Кроме того рекомендую ознакомиться с инструкцией, о том как почистить инжектор.
Видео
Автомобильные дворники.
Что такое круиз-контроль?
Как перевести PSI в атмосферы?
Толщиномер покрытий — назначение, принцип работы, виды устройств.
Подготовка топливных форсунок к замене
Процесс разборки инжектора начинается с подготовки приспособлений. Специфика разборки может отличаться для разных моделей авто и типов впускных комплексов.
Проверенные бренды
Чтобы распылитель прослужил максимально долго, важно выбирать оригинальную продукцию. И это касается как электрических, так и механических моделей
Из качественных аналогов можно купить устройства от компаний Siemens, Bosch, Delphi, OMVI, Hana.
Как снять форсунку
Перед демонтажом детали следует спустить давление в системе. На многих моделях авто предусмотрен специальный механизм на топливной рейке. Это особый клапан, который срабатывает после нажатия и способствует вытеканию топлива.
Затем стоит достать рампу, где удерживаются распылители. Разборка производится посредством отключения разъемов с проводами. Извлечь элементы можно поворотом или раскачиванием механизма.
Замена на новую
Разобравшись, как снять форсунку, остается установить на ее место новую деталь. Для безошибочного выполнения действия нужно иметь базовые навыки в решении таких задач. Алгоритм действий может отличаться для каждой модели транспортного средства.
Если производится плановая чистка, нужно снять уплотнительные кольца со всех распылителей и выбросить их.
Исполнительные элементы
Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.
Топливный насос
Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.
Форсунка
После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.
Регулятор холостого хода (РХХ)
Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.
Модуль зажигания
В принципе, это та же катушка зажигания, только их здесь четыре. При прохождении тока через первичную обмотку во вторичной коммутируется высокочастотный ток высокого напряжения, который подается на свечу.